SVM 任意一点到超平面的距离

w=\left(w_{1}, w_{2}, w_{3}, \ldots w_{N}\right)^{T}x=\left(x_{1}, x_{2}, x_{3}, \ldots x_{N}\right)^{T}; 超平面方程w^{T} x+b=0

超平面外的点m_{1}=\left(m_{11}, m_{12}, m_{13}, \ldots m_{1N}\right)^{T}在超平面上的投影为m_{0}=\left(m_{01}, m_{02}, m_{03}, \ldots m_{0N}\right)^{T}

显然m_{0}m_{1}=\left(m_{11}-m_{01}, m_{12}-m_{02}, m_{13}-m_{03}, \ldots m_{1N}-m_{0N}\right)^{T}平行于超平面的法向量w=\left(w_{1}, w_{2}, w_{3}, \ldots w_{N}\right)^{T}

设向量m_{0}m_{1}的长度为d,因为m_{0}在超平面上,w^{T} m_{0}+b=0。所以

m_{0}m_{1}\cdot w=w_{1}\left(m_{11}-m_{01})+w_{2}(m_{12}-m_{02})+w_{3}(m_{13}-m_{03})\ldots+w_{N}( m_{1N}-m_{0N}\right)

               =w_{T}m_{1}+b

\left|w \cdot m_{0}m_{1}\right|=\left|w \| m_{0}m_{1}\right|=\sqrt{w_{1}^{2}+\ldots+w_{N}^{2}} d

所以|w_{T}m_{1}+b|=\sqrt{w_{1}^{2}+\ldots+w_{N}^{2}} d

d=\frac{1}{\|w\|}\left|w_{T}m_{1}+b\right|

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值