目标检测&实例分割
文章平均质量分 88
目标检测&实例分割
凌青羽
从事LLM、计算机视觉和无人驾驶工作
展开
-
MWSIS: Multimodal Weakly Supervised Instance Segmentation with 2D Box Annotations for Autonomous
1.现状目前还没有仅使用2D框,同时对2D、3D进行实例分割2.提出提出多模态弱监督实例分割MWSIS:结合用于2D和3D模态的各种细颗粒度标签校正模块新的多模态交叉监督方式3.具体贡献2D伪标签生成分支 IPG:利用自监督校正的预测生成伪标签3D伪标签生成分支:SPG通过结合点云的空间先验信息生成伪标签为了进一步细化生成的伪标签,PVC模型利用历史预测进行校正Ring Segment-based Label Correction(RSC)模块,利用点云的深度先验信息来细化预测。原创 2023-12-17 03:48:00 · 979 阅读 · 0 评论 -
单目3D目标检测[基于深度辅助篇]
基于深度辅助的方法。原创 2023-10-26 13:03:45 · 436 阅读 · 0 评论 -
单目3D目标检测[基于几何约束篇]
基于语义和几何约束的方法原创 2023-10-22 04:03:43 · 683 阅读 · 4 评论 -
DeepLab系列(v1,v2,v3,v3+)总结
- v1:修改经典分类网络(VGG16),将空洞卷积应用于模型中,试图解决分辨率过低及提取多尺度特征问题,用CRF做后处理 - v2:设计ASPP模块,将空洞卷积的性能发挥到最大,沿用VGG16作为主网络,尝试使用ResNet-101进行对比实验,用CRF做后处理 - v3:以ResNet为主网络,设计了一种串行和一种并行的DCNN网络,微调ASPP模块,取消CRF做后处理 - v3+:以ResNet或Xception为主网络,结合编解码结构设计了一种新的算法模型,以v3作为编码器结构,另行设计了解原创 2022-05-09 00:30:32 · 18982 阅读 · 5 评论 -
DeFCN:《End-to-End Object Detection with Fully Convolutional Network》复现:训练自己数据集
论文链接:https://arxiv.org/pdf/2012.03544.pdf代码链接:https://github.com/Megvii-BaseDetection/DeFCN论文解读:https://zhuanlan.zhihu.com/p/371594304一. 环境搭建1.1. 安装cvpods框架git clone https://github.com/Megvii-BaseDetection/cvpods.gitpython3 -m pip install -e cvpods.原创 2022-04-29 20:06:26 · 1042 阅读 · 7 评论 -
[BEV系列]BEVFormer: Learning Bird’s-Eye-ViewRepresentation from Multi-Camera Images viaSpatiotemporal
BEVFormer包含三个关键设计:1.网格形状的BEV查询(grid-shaped BEV queries)2.空间交叉注意模块(patial cross-attention module)3.时间自注意模块(temporal self-attention modul),原创 2022-04-14 20:32:10 · 4772 阅读 · 1 评论 -
[目标检测系列]ATSS: Bridging the Gap Between Anchor-based and Anchor-free Detection via ATSS(CVPR2020)
文章主要是在寻找造成 anchor-based 和 anchor-free 之间性能差异的主要因素,并指出该因素为正负样本的定义。假如采用相同的定义,那么回归方法对最后的结果产生的影响是较小的。原创 2022-03-29 20:48:18 · 3542 阅读 · 0 评论 -
[ZSS系列]Prototypical Matching and Open Set Rejection for Zero-Shot Semantic Segmentation(ICCV 2021)
提出了零镜头语义分割,其目的不仅是识别训练中包含的已知类,还包括从未见过的新类。原创 2022-03-29 02:04:39 · 4195 阅读 · 0 评论 -
HDMapNet: An Online HD Map Construction and Evaluation Framework:将高精地图工作交给感知去做
构建高清地图往往都是公司的高清地图团队的任务,但是需要很大的工作量,并且道路变化会增加标注的工作量,实时的建立高清地图,将任务交给感知,是个很有意义和挑战的事!原创 2022-03-25 00:01:05 · 1599 阅读 · 1 评论 -
U-Net——《U-Net: Convolutional Networks for Biomedical Image Segmentation》(MICCA 2015)
《U-Net: Convolutional Networks for Biomedical Image Segmentation》、《FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics》原创 2022-03-23 02:50:19 · 754 阅读 · 0 评论 -
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
《SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation》、《Learning Deconvolution Network for Semantic Segmentation》(ICCV 2015)原创 2022-03-22 03:35:15 · 2993 阅读 · 1 评论 -
SOLOv2训练自己数据集(实例分割,停车位/牛分割)
1. 环境搭建 2. 修改配置文件下载权重 3. 修改配置文件 4. 自定义数据集转COCO格式5. 实验结果原创 2022-03-20 01:46:36 · 10066 阅读 · 44 评论 -
mmsegmentation训练自定义数据集(语义分割,Upernet,Swin-T)
mmsegmentation训练自定义数据集(语义分割,Upernet,Swin-T)1. 论文复现1.1. 原文结果1.2. 复现结果1.3. Test阶段速度:2. Mmsegmentation Trick2.1. Pipeline(加载数据、数据增强)2.2. 损失函数选择2.3. 学习率策略2.4. 其他trick3. 训练FRFL相机数据集3.1. 修改配置文件:3.2. 实验参数修改3.3. 消融实验3.3.1 参数作用3.3.2. 消融实验3.3.3. 实验精度3.4.分割效果(白色或紫色为原创 2022-03-04 16:11:31 · 8316 阅读 · 32 评论 -
MMSegmentation 训练测试全流程
MMSegmentation 训练测试全流程1.按照执行顺序的流程梳理Level 0: 运行 Shell 命令:Level 1: 在 tools/train.py 内:Level 2: 转进到 mmseg.apis 模块的 train_segmentor 函数内:Level 3: 转进到 mmcv/runner/iter_based_runner.py 内的 IterBasedRunner 类的 run 函数内部:Level 4: 转进到 IterBasedRunner 类的 train 函数内部Level原创 2022-02-17 12:00:35 · 6052 阅读 · 1 评论 -
手写YOLOv3|代码详细注释
YOLOv3代码详解一. 数据预处理一. Yolov3网络一. Train一. Detection源代码:https://github.com/eriklindernoren/PyTorch-YOLOv3一. 数据预处理utils/datasets.pyimport globimport randomimport osimport sysimport numpy as npfrom PIL import Imageimport torchimport torch.nn.functi原创 2021-10-24 11:14:19 · 1093 阅读 · 1 评论 -
近期开源 | 激光雷达点云的3D目标检测 | 论文
近期开源的 | 激光雷达点云的3D目标检测 | 论文1. HVPR——《Hybrid Voxel-Point Representation for Single-stage 3D Object Detection》2021.42. SE-SSD——《Self-Ensembling Single-Stage Object Detector From Point Cloud》 2021.41. HVPR——《Hybrid Voxel-Point Representation for Single-stage原创 2021-10-20 16:34:00 · 643 阅读 · 0 评论 -
主动学习研究现状
一. 传统查询策略(Query Strategy)二. 在图像分类的应用三. 在目标检测的研究原创 2021-08-24 13:42:43 · 1594 阅读 · 0 评论 -
CVPR2021 | 2D目标检测论文解读
CVPR2021 | 2D目标检测论文解读1. UP-DETR:——《UP-DETR: Unsupervised Pre-training for Object Detection with Transformers(Oral)》2. OWOD——《Towards Open World Object Detection(Oral)》3. YOLOF——《You Only Look One-level Feature》4. DeFCN——《End-to-End Object Detection with Fu原创 2021-08-22 02:03:45 · 3100 阅读 · 1 评论 -
Oriented R-CNN:面向旋转目标检测的 R-CNN(ICCV2021)
本文提出一种通用的两阶段旋转目标检测器,具有良好的准确性和效率,表现SOTA!性能优于Mask OBB、SCRDet等网络,代码现已开源!作者单位:西北工业大学原创 2021-08-14 01:59:53 · 8812 阅读 · 0 评论 -
RS loss:涨点神器!用于目标检测和实例分割的新损失函数(ICCV2021)
涨点神器!RS Loss:新损失函数!可助力现有目标检测和实例分割网络涨点,如应用于Cascade R-CNN、SOLOv2等,优于QFL、AP和Focal Loss等损失,代码刚刚开源!单位:中东技术大学原创 2021-08-04 11:37:54 · 2412 阅读 · 4 评论