自动驾驶--顶会论文解读
文章平均质量分 94
ICCV、ECCV、CVPR
凌青羽
从事LLM、计算机视觉和无人驾驶工作
展开
-
自动驾驶高效预训练--降低落地成本的新思路(AD-PT)
出发点:通过预训练的方式,可以利用大量无标注数据进一步提升3D检测。原创 2023-11-06 20:24:24 · 620 阅读 · 1 评论 -
自动驾驶高效预训练--降低落地成本的新思路(ReSimAD)
高效3D预训练–降低模型对3D数据依赖的新思路提升基线模型的Capacity1.Capacity模型训到收敛,通过调参没办法提升,但是通过上游提升精度,这样的模型的Capacity理解为提升了2.更快的收敛速度3.更少的数据需求利用好了源域知识,可以做到zero-shot目标域感知源域重建,目标域仿真如果预训练的方式正确,海量数据预训练可以提升模型本身的Capacity达到上游预训练数据增加,会不断提升下游预训练后的任务指标提升。原创 2023-11-02 16:49:39 · 205 阅读 · 0 评论 -
BEVFusion复现 (Ubuntu RTX3090)
在代码中mmdetection-2.11.0文件中编译安装,不需要去下载了。2.安装PyTorch 和 torchvision。我的机器是RTX3090,CUDA11.1。5.安装MMDetection3D。先回到BEVFusion主目录。6.编译BEVFusion环境。原创 2023-08-29 03:41:19 · 2301 阅读 · 14 评论 -
[BEV系列]BEVFormer: Learning Bird’s-Eye-ViewRepresentation from Multi-Camera Images viaSpatiotemporal
BEVFormer包含三个关键设计:1.网格形状的BEV查询(grid-shaped BEV queries)2.空间交叉注意模块(patial cross-attention module)3.时间自注意模块(temporal self-attention modul),原创 2022-04-14 20:32:10 · 4772 阅读 · 1 评论 -
灾难性遗忘/增量学习的研究现状
灾难性遗忘,是指在新的数据集上训练模型,会遗忘掉旧数据上学习到的知识,在旧数据上测试会发生很大的掉点原创 2022-03-12 03:12:12 · 9780 阅读 · 8 评论 -
主动学习研究现状
一. 传统查询策略(Query Strategy)二. 在图像分类的应用三. 在目标检测的研究原创 2021-08-24 13:42:43 · 1594 阅读 · 0 评论 -
CVPR2021 | 2D目标检测论文解读
CVPR2021 | 2D目标检测论文解读1. UP-DETR:——《UP-DETR: Unsupervised Pre-training for Object Detection with Transformers(Oral)》2. OWOD——《Towards Open World Object Detection(Oral)》3. YOLOF——《You Only Look One-level Feature》4. DeFCN——《End-to-End Object Detection with Fu原创 2021-08-22 02:03:45 · 3100 阅读 · 1 评论 -
Oriented R-CNN:面向旋转目标检测的 R-CNN(ICCV2021)
本文提出一种通用的两阶段旋转目标检测器,具有良好的准确性和效率,表现SOTA!性能优于Mask OBB、SCRDet等网络,代码现已开源!作者单位:西北工业大学原创 2021-08-14 01:59:53 · 8812 阅读 · 0 评论 -
盘点CVPR2021中5篇数据扩增论文
数据扩增一直是竞赛中非常重要的一环,在CVPR 2021论文中有不少的数据扩增方法,本文将对其中通用的论文进行介绍。原创 2021-08-10 01:37:36 · 3374 阅读 · 2 评论 -
RS loss:涨点神器!用于目标检测和实例分割的新损失函数(ICCV2021)
涨点神器!RS Loss:新损失函数!可助力现有目标检测和实例分割网络涨点,如应用于Cascade R-CNN、SOLOv2等,优于QFL、AP和Focal Loss等损失,代码刚刚开源!单位:中东技术大学原创 2021-08-04 11:37:54 · 2412 阅读 · 4 评论