吴恩达系列课程《神经网络与深度学习》第一周 | 第二周 | 学习笔记

吴恩达系列课程《神经网络与深度学习》第一周与第二周总结

最近一段时间,在学习吴恩达老师的《深度学习工程师》的系列课程。

从4月开始,陆陆续续的学习了有一段时间,英文教学,内容又涵盖很多的数学知识。简直就是英文版的高等数学,让人很想睡觉。然后有一次在图书馆里面5分钟就睡着了…

不经意回想起大学时期,被高等数学虐的样子。一颗高高的树上挂满了人…
又不经意回想起备考研究生的时候,数学虐我千百遍,我待数学如初恋…

写下这篇文章的目的有三:
1.记录一些学习感悟,学习历程。
2.学习这样一门系列课程,会有怎样的收获?
3.这样的课程适合什么人群?它是不是一门前期很难学懂的课程,许多人会放弃学完,又或者是学完后发现并没有什么实质性的收获。

暂时先确定这样的3个问题,等学完全部的系列课程,再仔细的聊一聊。

总结一下,关于《神经网络与深度学习》第一周和第二周的知识:

第一周 深度学习概述,这一周的内容不多,先谈论什么是神经网络,任何一本关于神经网络的书中都会说到,现阶段我大概理解的意思是——计算机模仿人脑中神经元的模型,然后构造出来的一种模型,它能干很多的事情!(给它竖大拇指)

还有一个对于神经网络中的监督学习这个点,现在没懂。(以后再补吧)

第二周 神经网络基础,这一周的内容真的很多,又有很多的数学,就是那种高中数学一打盹,醒来后发现完全不懂的感觉。这周的概念也巨多:logistic回归、损失函数、梯度下降、导数、向量化、Python广播。很多没补的概念(以后再补吧)

在看完第二遍的时候,我大概了解了本周的重点——在进行Python计算的时候,可以使用向量化的方法来节省代码运行的时间。第二个是它讲了一套数学公式,用于计算,具体公式细节的意义现在没懂。(以后再补吧)
在这里插入图片描述

在这里插入图片描述

先提了一个公式,我感觉这应该就是logistic回归的公式,然后提向量化,改进这个公式。

numpy里面的一些公式:

np.dot(a,b)这是numpy的线性代数运算,两个数组的点积,即元素对应相乘。a b 均为矩阵
np.exp(v)对数组v中各元素求指数 e^
np.abs(v)对数组v中各元素求绝对值
np.max(v,0)求数组中最大的元素
np.zeros((x,x))声明0矩阵
np.sum(v)对数组v各元素求和
NumPy 广播(Broadcast)如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胖丨学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值