论文笔记
文章平均质量分 95
前方是海洋
由小白向资深小白努力
展开
-
【论文笔记】Learning from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction
如何将元学习与时空网络结合以预测时空信息原创 2022-08-13 16:33:25 · 1591 阅读 · 0 评论 -
【论文笔记】Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction
交通预测的关键挑战在于如何建模复杂的空间依赖性和时间动态。虽然在建模中考虑了这两个因素,但现有的工作对空间依赖性和时间动力学做出了强有力的假设,即空间依赖性在时间上是平稳的,时间动力学是严格周期性的。然而,在实践中,空间依赖性可能是动态的(即不时变化),而时间动力学可能从一个周期到另一个周期有一些扰动。本文针对动态性这一点做出了自己的工作。...原创 2022-08-11 11:35:22 · 837 阅读 · 0 评论 -
【论文笔记】Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
在智慧城市的建设中,出租车需求预测是一个及其重要的问题。准确的预测需求能够帮助城市预分配交通资源,提前避免交通拥堵,从而缓解交通压力,同时降低出租车空载率,提高出租车司机收入。传统的出租车需求预测往往基于时序预测技术,无法对复杂的非线性时空关系进行建模。深度学习技术的突破为交通预测问题带来了曙光,但是现存的深度学习网络架构,往往只单一考虑了时间关系或者空间关系,没有把两者结合起来进行建模。本文提出了 DMVST-Net,同时对时间关系和空间更新进行建模。...原创 2022-08-08 22:55:24 · 1190 阅读 · 1 评论