【论文笔记】Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction

本文提出了一种新的时空动态网络(STDN),用于处理交通预测中的动态空间依赖性和非严格周期性时间依赖性。STDN采用流门机制学习空间相似性的动态变化,并通过周期性注意力转移机制处理时间依赖。实验在真实交通数据集上验证了方法的有效性,降低了预测误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

由于大规模交通数据的日益可用性及其在现实世界中的重要性,交通预测在人工智能研究领域引起了越来越多的关注。例如,一个准确的出租车需求预测可以帮助出租车公司预先分配出租车。交通预测的关键挑战在于如何建模复杂的空间依赖性和时间动态。虽然在建模中考虑了这两个因素,但现有的工作对空间依赖性和时间动力学做出了强有力的假设,即空间依赖性在时间上是平稳的,时间动力学是严格周期性的。然而,在实践中,空间依赖性可能是动态的(即不时变化),而时间动力学可能从一个周期到另一个周期有一些扰动。在本文中,作者做了两个重要的观察:(1)位置之间的空间依赖性是动态的;(2)时间依赖遵循日和周模式,但其动态时间变化不是严格的周期性。为了解决这两个问题,作者提出了一种新的时空动态网络(STDN),该网络引入了一种流门机制来学习位置之间的动态相似性,并设计了一种周期性转移的注意机制来处理长期的周期性时间转移。据作者所知,这是第一个在一个统一的框架内解决这两个问题的工作。作者在真实交通数据集上的实验结果验证了该方法的有效性。

本文贡献

模型架构

在这里插入图片描述
STDN的架构。(a)周期性转移的注意机制捕捉了长期的周期性依赖性和时间转移。对于每天,作者还使用LSTM来捕获顺序信息。(b)短期的时间依赖性由一个LSTM捕获。(c ) 流门机制通过控制空间信息的传播来跟踪动态的空间相似度表示;FC是指全连接层,Conv是指多个卷积层。(d)一个统一的多任务预测组件可以同时预测两种类型的交通量

局部时空网络

使用局部CNN处理局部空间依赖(处理方法同DMVST),使用原始的LSTM处理时间依赖关系。

空间动态相似性–流门机制

why: 局部CNN通过局部连接和权重共享来处理局部结构的相似性。在局部CNN中,局部空间依赖性依赖于历史交通量的相似性。但其空间依赖性是平稳的,并不能充分反映目标区域与其相邻区域之间的关系。表示区域之间相互作用的一种更直接的方式是交通流量。如果两个区域之间存在更多的流动,它们之间的关系就会更强(即,它们更相似)。交通流可以用来显式地控制流量信息在区域之间的传播。因此,作者设计了一个流量门机制(FGM),它明确地捕获了层次中的动态空间依赖性。
how(概述): 与局部CNN类似,作者构造了局部空间流图来保护流的空间依赖性。某一时间间隔内与某一区域相关的流量流分为两类,即在该时间间隔内从该区域的其他地方流出,从该区域向其他地方流出。在此时间间隔内,可以构造两个流矩阵,其中每个元素表示从/到其他相应区域的流入/流出。图©.给出了流出矩阵的一个例子
how(详细):
Y i , t ( k ) = R e L U ( W ( k ) ∗ Y i , t ( k − 1 ) + b ( k ) ) ⊗ σ ( F t i , k − 1 ) Y_{i,t}^{(k)}=ReLU(W^{(k)}*Y_{i,t}^{(k-1)}+b^{(k)})\otimes\sigma(F_t^{i,k-1}) Yi,t(k)=ReLU(W(k)Yi,t(k1)+b(k)σ(Fti,k1)
其中, σ \sigma σ是张量之间的元素级乘。F矩阵是通过卷积得到的流矩阵,Y即是代表流门的输出矩阵,表示空间依赖的动态变化。

时间动态相似性–周期性注意力转移机制

在局部时空网络中,只使用前几个时间间隔(通常是几个小时),忽略了长期依赖性(如周期性)。所以应该考虑对预测目标的相对时间间隔(例如,昨天和前天的同一时间)进行建模。然而,单纯考虑相对时间间隔是不够的,这忽略了周期性的时间转移,即,交通数据并非严格意义上的周期性。例如,工作日的高峰时间通常在下午,但可以从下午4:30到6:00。由于交通事故或交通拥挤,周期性信息的时间转移在交通序列中普遍存在。下图中显示了在不同的天和周之间的时间转移。因此,本文设计了一个周期性注意力转移机制(Periodically Shifted Attention Mechanism)来解决这些问题。
在这里插入图片描述
这里的重点是处理不同天之间的周期性的变化。如图1(a)所示,包含了前P天对应的时间间隔来处理周期性依赖关系。对于每一天,为了解决时间移动的问题,在Q中进一步选择每天的Q时间间隔。例如,如果预测的时间是晚上9:00-9:30,选择预测时间的前后1小时(即8:00-10:30pm,Q = 5)。这些时间间隔 q ∈ Q q \in Q qQ用于处理潜在的时间周期性转移。这里使用LSTM来表达每天

当前提供的引用内容并未涉及论文Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings》的相关信息。因此无法基于已有引用完成对该论文的具体总结。 然而,可以提供一些关于该主题的一般性背景知识以及可能的研究方向: ### 论文概述 《Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings》主要探讨了文本到图像生成模型评估中的关键问题。具体而言,研究聚焦于以下几个方面: 1. **评价指标**:传统自动化的评价指标(如FID、CLIPScore等)是否能够充分反映生成图像的质量和多样性[^6]。 2. **提示工程**:不同的文本描述如何影响生成图像的效果及其质量评估[^7]。 3. **人类评分**:引入人类主观判断作为补充手段,验证自动化指标的有效性和局限性[^8]。 通过提出一种新的综合框架Gecko,作者试图建立更全面且可靠的评测体系来衡量文本转图片技术的进步程度。 以下是部分实现代码用于计算某些常见视觉相似度分数的例子: ```python from sklearn.metrics.pairwise import cosine_similarity def compute_clip_score(image_features, text_features): """ Computes CLIP Score between image features and corresponding text features. Parameters: image_features (numpy.ndarray): Array of shape (n_samples, n_dimensions). text_features (numpy.ndarray): Array of shape (n_samples, n_dimensions). Returns: float: Average Cosine Similarity score across all samples. """ scores = [] for img_feat, txt_feat in zip(image_features, text_features): sim = cosine_similarity([img_feat], [txt_feat]) scores.append(sim.item()) avg_score = sum(scores)/len(scores) return avg_score ``` 此函数展示了如何利用余弦距离测量两张嵌入空间内的向量之间的接近程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值