题目:
题意:
首先给出我们一个图的信息,随后询问P个问题:从点a到点b一共经过几个点
分析:
对于这题,并不是简单的求最短路,也不是求有几种路径,而是更为复杂的求经过点数。其实说到复杂,其实也没有多复杂。
小编认为最重要的一点就是要明白这个经过的点数,不仅仅是一条,我们如有多条路径为最短路,那么我们就需要加上不重复的点。其次,因为这里的边没有给出权值,所以我们将其视为1即可。
思路:
小编的思路是先求出每个点到其他点的最短路径(Floyd),然后再看每个最短路径经过的点数为多少:如果当前我们求到的最短路,与另一种路径相等,那么即代表经过的点数+1(必定不重复)。
如:1→4、4→3、1→2、2→3,求1→3。这个时候我们就会发现有两条相等的路径,所以小编想到了枚举。
这是一种循环跟Floyd一样的枚举,因为我们的3个控制变量,分别代表:起始点、终止点以及过渡点。所以假如t[i][j]=t[i][k]+t[k][j],那么就代表了即使从过渡点过来,我们一样可以保持最短路,也就是说我们经过的点数可以+1。
当然,这样求出来还缺少起始点和终止点,所以我们可以在输出时+2。
AC后感想:
说真的,实操起来不会有多大难度,各位想练习图的连通性的读者大可以放开去做。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
inline LL read()
{
LL a=0,f=1;char s=getchar();
while(s<'0'||s>'9') {if(s=='-') f=-1;s=getchar();}
while(s>='0'&&s<='9') {a=a*10+s-'0';s=getchar();}
return a*f;
}
int n,m,t[101][101],d[101][101];
int min(int x,int y)
{
return x<y? x:y;
}
int main()
{
int a,b;
n=read();m=read();
for(int i=1;i<=100;i++)
for(int j=1;j<=100;j++)
t[i][j]=99999999;
for(int i=1;i<=m;i++)
{
a=read();b=read();
t[a][b]=t[b][a]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
t[i][j]=min(t[i][j],t[i][k]+t[k][j]);
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(t[i][j]==t[i][k]+t[k][j])
d[i][j]++;
int p;
p=read();
for(int i=1;i<=p;i++)
{
a=read();b=read();
printf("%d\n",d[a][b]+2);
}
return 0;
}