POJ P3468 A Simple Problem with Integers

目录:


题目:

传送门


分析:

树状数组:

tree[i]=a[i]a[i1] t r e e [ i ] = a [ i ] − a [ i − 1 ] (差分),那么容易得到:
tree[1]+tree[2]++tree[i]=a[i] t r e e [ 1 ] + t r e e [ 2 ] + … + t r e e [ i ] = a [ i ] 这个公式
所以,只需要维护 tree t r e e 数组就可以实现区间修改了。
如何实现区间查询呢?
我们已经推出了一个公式:
tree[1]+tree[2]+tree[i]=a[i] t r e e [ 1 ] + t r e e [ 2 ] + … t r e e [ i ] = a [ i ]
那么,对于1到r的区间和,即为:
a[1]+a[2]++a[r1]+a[r] a [ 1 ] + a [ 2 ] + … … + a [ r − 1 ] + a [ r ]
=tree[1]+(tree[1]+tree[2])++(tree[1]++tree[r]) = t r e e [ 1 ] + ( t r e e [ 1 ] + t r e e [ 2 ] ) + … + ( t r e e [ 1 ] + … + t r e e [ r ] )
=(tree[1]r)+(tree[2]r1)+(tree[r]1) = ( t r e e [ 1 ] ∗ r ) + ( t r e e [ 2 ] ∗ r − 1 ) + … ( t r e e [ r ] ∗ 1 )
=r(tree[1]+tree[2]++tree[r])(tree[1]0+tree[2]1++tree[r](r1)) = r ∗ ( t r e e [ 1 ] + t r e e [ 2 ] + … + t r e e [ r ] ) − ( t r e e [ 1 ] ∗ 0 + t r e e [ 2 ] ∗ 1 + … + t r e e [ r ] ∗ ( r − 1 ) )
对于 a a 的树状数组(差分)tree,建立一个新的树状数组 tree1 t r e e 1 使得: tree1[i]=tree[i](i1) t r e e 1 [ i ] = t r e e [ i ] ∗ ( i − 1 )
之后,x到y的区间和即为:
(ysum(tree,y)(x1)sum(tree,x1))(sum(tree1,y)sum(tree1,x1)) ( y ∗ s u m ( t r e e , y ) − ( x − 1 ) ∗ s u m ( t r e e , x − 1 ) ) − ( s u m ( t r e e 1 , y ) − s u m ( t r e e 1 , x − 1 ) )


线段树:

对于线段树的做法还是很简单的,只需要注意用 long l o n g long l o n g 就好了


代码:

树状数组:

//2641MS
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>  
#include<cstdlib>
#include<algorithm>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<list>
#include<ctime>
#include<iomanip>
#include<string>
#include<bitset>
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
int min(int x,int y)
{ return x<y? x:y; }
int max(int x,int y)
{ return x>y? x:y; }
LL c[2][100001];
int n=read(),q=read();
void add(int w,int x,int y)
{
    for(;x<=n;x+=x&-x) c[w][x]+=y;
    return;
}
LL ask(int w,int x)
{
    LL ans=0;
    for(;x;x-=x&-x) ans+=c[w][x];
    return ans;
}
LL sum[100001];
int main()
{
    int x[100001];
    for(int i=1;i<=n;i++) x[i]=read(),sum[i]=sum[i-1]+x[i];
    char c;
    while(q--)
    {
        cin>>c;
        int l=read(),r=read();
        if(c=='C')
        {
            int d=read();
            add(0,l,d);
            add(0,r+1,-d);
            add(1,l,d*l);
            add(1,r+1,-(r+1)*d);
        }
        else
        {
            LL ans=sum[r]+(r+1)*ask(0,r)-ask(1,r);
            ans-=sum[l-1]+l*ask(0,l-1)-ask(1,l-1);
            printf("%lld\n",ans);
        }
    }   
    return 0;
}

线段树:

//3297MS
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>  
#include<cstdlib>
#include<algorithm>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<list>
#include<ctime>
#include<iomanip>
#include<string>
#include<bitset>
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
struct segmentree{
    int l,r;
    LL sum,add;
}t[400040];
int x[100001];
void build(int p,int l,int r)
{
    t[p].l=l;t[p].r=r;
    if(l==r) {t[p].sum=x[l];return;}
    int mid=(l+r)>>1;
    build(p*2,l,mid);  
    build(p*2+1,mid+1,r);
    t[p].sum=t[p*2].sum+t[p*2+1].sum;
    return;
}
void spread(int p)
{
    if(t[p].add)
    {
        t[p*2].sum+=t[p].add*(t[p*2].r-t[p*2].l+1);
        t[p*2+1].sum+=t[p].add*(t[p*2+1].r-t[p*2+1].l+1);
        t[p*2].add+=t[p].add;t[p*2+1].add+=t[p].add;
        t[p].add=0;
    }
    return;
}
void change(int p,int l,int r,int w)
{
    if(l<=t[p].l&&r>=t[p].r)
    {
        t[p].sum+=(long long)w*(t[p].r-t[p].l+1);
        t[p].add+=w;
        return;
    }
    spread(p);
    int mid=(t[p].l+t[p].r)>>1;
    if(l<=mid) change(p*2,l,r,w);
    if(r>mid) change(p*2+1,l,r,w);
    t[p].sum=t[p*2].sum+t[p*2+1].sum;
    return;
}
LL ask(int p,int l,int r)
{
    if(l<=t[p].l&&r>=t[p].r) return t[p].sum;
    spread(p);
    int mid=(t[p].l+t[p].r)>>1;
    LL val=0;
    if(l<=mid) val+=ask(p*2,l,r);
    if(r>mid) val+=ask(p*2+1,l,r);
    return val;
}
int main()
{
    int n=read(),q=read();
    for(int i=1;i<=n;i++) x[i]=read();
    build(1,1,n);
    char c;
    int l,r;
    while(q--)
    {
        cin>>c;l=read();r=read();
        if(c=='C') 
        {
            int w=read();
            change(1,l,r,w);
        }
        else
          printf("%lld\n",ask(1,l,r));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值