【MLLM】Qwen2.5-Omni-7B/3B模型

note

  • 全模态LLM:输入可以是文本、图片、语音、视频,输出可以是流式的文本/语音
  • 提出Thinker-Talker模型架构
  • 提出了一种名为 TMRoPE(时间对齐多模态 RoPE)的新颖位置嵌入,用于同步视频输入和音频的时间戳
  • 实时语音和视频聊天:专为完全实时交互而设计的架构,支持分块输入和即时输出
  • 和单模态模型作对比,更强:Qwen2.5-Omni 在音频功能方面优于类似大小的 Qwen2-Audio,并达到了与 Qwen2.5-VL-7B 相当的性能

一、Qwen2.5-Omni-7B模型

  • 是全模态LLM:输入可以是文本、图片、语音、视频,输出可以是流式的文本/语音
  • 提出Thinker-Talker模型架构
  • 提出了一种名为 TMRoPE(时间对齐多模态 RoPE)的新颖位置嵌入,用于同步视频输入和音频的时间戳
  • 实时语音和视频聊天:专为完全实时交互而设计的架构,支持分块输入和即时输出
  • 和单模态模型作对比,更强:Qwen2.5-Omni 在音频功能方面优于类似大小的 Qwen2-Audio,并达到了与 Qwen2.5-VL-7B 相当的性能

在这里插入图片描述

Qwen2.5-Omni-7B是一个端到端的多模态模型,可以接收文本、图像、音频和视频的输入,以文本或语音作为输出,参数模型结构见图2-3。

HF link:
https://huggingface.co/Qwen/Qwen2.5-Omni-7B
Paper:
https://github.com/QwenLM/Qwen2.5-Omni/blob/main/assets/Qwen2.5_Omni.pdf

Qwen2.5-Omni提出了Thinker-Talker架构,同时提出了TMRoPE(时间对齐多模态 RoPE)的新型位置编码,用于同步视频输入的时戳与音频,支持全实时交互,支持分块输入和即时输出。

Qwen2.5-Omni,文本部分初始化采用Qwen2.5模型,Vision编码器初始化采用Qwen2.5-VL部分,Audio编码器初始化使用Whisper-large-v3。

Qwen2.5-Omni效果很强,在音频能力上优于同等规模的Qwen2-Audio,在视觉能力上与Qwen2.5-VL-7B相当。

注意:如果需要音频输出,系统提示词必须为“You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.”

二、Qwen2.5-Omni-3B模型

HF link: https://huggingface.co/Qwen/Qwen2.5-Omni-3B

Paper: https://huggingface.co/papers/2503.20215

三、模型架构

在这里插入图片描述
一、架构设计:​​

  • ​​Thinker-Talker架构:​​ Thinker负责处理和理解来自文本、音频和视频模态的输入,生成高层次的表示和相应的文本。Talker则负责接收Thinker的高层次表示,并以流式方式生成语音令牌。
  • TMRoPE:​​ 提出了一种新的位置嵌入方法TMRoPE,显式地结合时间信息以同步音频和视频。通过对原始旋转嵌入进行分解,分别处理时间、高度和宽度信息。
  • 流式处理:​​ 采用块状流处理方法,支持多模态信息的实时处理。音频和视频编码器分别采用块状注意力和闪存注意力机制,以提高处理效率。

​​
二、生成过程:​

  • 文本生成:​​ 由Thinker直接生成文本,采用自回归采样方法,基于词汇表上的概率分布生成文本。
  • 语音生成:​​ Talker接收Thinker的高层次表示和文本令牌的嵌入,自回归地生成音频令牌。引入滑动窗口块注意力机制,限制当前令牌的上下文访问范围,增强流式输出的质量。
    ​​

三、训练过程:​​

  • 预训练:​​ 分为三个阶段,第一阶段锁定LLM参数,训练视觉和音频编码器;第二阶段解冻所有参数,进行更广泛的多模态数据训练;第三阶段使用长序列数据进行训练,增强模型对复杂长序列数据的理解能力。
  • 后训练:​​ 包括指令跟随数据训练、DPO优化和多说话人指令微调,提升语音生成的稳定性和自然性。

四、模型效果

在这里插入图片描述

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值