-
求高阶导的莱布尼兹公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0}{\rm C}_n^k u^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)注意,加括号的右上角标号不是幂次,而是导数的阶次。
补充:排列和组合的公式 排 列 公 式 : A n k = n ! ( n − k ) ! 组 合 公 式 : C n k = n ! ( n − k ) ! k ! 排列公式:A_n^k=\frac{n!}{(n-k)!}\\ 组合公式:C_n^k=\frac{n!}{(n-k)!k!} 排列公式:Ank=(n−k)!n!组合公式:Cnk=
数学公式总结
最新推荐文章于 2021-11-05 14:23:55 发布
这篇博客总结了数学中的重要公式,包括求高阶导数的莱布尼兹公式和排列组合的计算方法。此外,还详细介绍了高斯分布的一维概率密度函数及其积分性质,通过换元法和夹逼准则证明了积分结果为π。
摘要由CSDN通过智能技术生成