数学公式总结

这篇博客总结了数学中的重要公式,包括求高阶导数的莱布尼兹公式和排列组合的计算方法。此外,还详细介绍了高斯分布的一维概率密度函数及其积分性质,通过换元法和夹逼准则证明了积分结果为π。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 求高阶导的莱布尼兹公式 ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0}{\rm C}_n^k u^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)注意,加括号的右上角标号不是幂次,而是导数的阶次。
    补充:排列和组合的公式 排 列 公 式 : A n k = n ! ( n − k ) ! 组 合 公 式 : C n k = n ! ( n − k ) ! k ! 排列公式:A_n^k=\frac{n!}{(n-k)!}\\ 组合公式:C_n^k=\frac{n!}{(n-k)!k!} Ank=(nk)!n!Cnk=(nk)!k!n!

  2. 下取整函数的符号也会用方括号表示([x]),称作高斯符号。

  3. 我们知道,一维高斯分布的概率密度表达式为: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2并且有函数与 x x x轴所谓面积等于1,即 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 \int^{+\infty}_{-\infty}f(x)dx=\int^{+\infty}_{-\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx=1 +f(x)dx=+2π σ1e2σ2(xμ)2dx=1 不妨设 v = x − μ 2 σ v=\frac{x-\mu}{\sqrt2\sigma} v=2 σxμ,我们进行积分换元,当 x → − ∞ x\to-\infty x时, v → − ∞ v\to-\infty v;当 x → + ∞ x\to+\infty x+时, v → + ∞ v\to+\infty v+,并且此时 x = 2 σ v + μ x=\sqrt2\sigma v+\mu x=2 σv+μ,故有 ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 π ∫ − ∞ + ∞ e − v 2 d v = 1 \int^{+\infty}_{-\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx=\frac{1}{\sqrt\pi}\int^{+\infty}_{-\infty}e^{-v^2}dv=1 +2π σ1e2σ2(xμ)2dx=π 1+ev2dv=1,故有 ∫ − ∞ + ∞ e − v 2 d v = π \int^{+\infty}_{-\infty}e^{-v^2}dv=\sqrt\pi +ev2dv=π ,这类函数通常无法直接求积分,那么是怎么得到他的积分结果是 π \sqrt\pi π 的呢?其实用的是夹逼准则进行求解的。下面给出证明:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值