数学公式总结

这篇博客总结了数学中的重要公式,包括求高阶导数的莱布尼兹公式和排列组合的计算方法。此外,还详细介绍了高斯分布的一维概率密度函数及其积分性质,通过换元法和夹逼准则证明了积分结果为π。
摘要由CSDN通过智能技术生成
  1. 求高阶导的莱布尼兹公式 ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0}{\rm C}_n^k u^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)注意,加括号的右上角标号不是幂次,而是导数的阶次。
    补充:排列和组合的公式 排 列 公 式 : A n k = n ! ( n − k ) ! 组 合 公 式 : C n k = n ! ( n − k ) ! k ! 排列公式:A_n^k=\frac{n!}{(n-k)!}\\ 组合公式:C_n^k=\frac{n!}{(n-k)!k!} Ank=(nk)!n!Cnk=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值