-
求高阶导的莱布尼兹公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum^n_{k=0}{\rm C}_n^k u^{(n-k)}v^{(k)} (uv)(n)=k=0∑nCnku(n−k)v(k)注意,加括号的右上角标号不是幂次,而是导数的阶次。
补充:排列和组合的公式 排 列 公 式 : A n k = n ! ( n − k ) ! 组 合 公 式 : C n k = n ! ( n − k ) ! k ! 排列公式:A_n^k=\frac{n!}{(n-k)!}\\ 组合公式:C_n^k=\frac{n!}{(n-k)!k!} 排列公式:Ank=(n−k)!n!组合公式:Cnk=(n−k)!k!n! -
下取整函数的符号也会用方括号表示([x]),称作高斯符号。
-
我们知道,一维高斯分布的概率密度表达式为: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ1e−2σ2(x−μ)2并且有函数与 x x x轴所谓面积等于1,即 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 \int^{+\infty}_{-\infty}f(x)dx=\int^{+\infty}_{-\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx=1 ∫−∞+∞f(x)dx=∫−∞+∞2πσ1e−2σ2(x−μ)2dx=1 不妨设 v = x − μ 2 σ v=\frac{x-\mu}{\sqrt2\sigma} v=2σx−μ,我们进行积分换元,当 x → − ∞ x\to-\infty x→−∞时, v → − ∞ v\to-\infty v→−∞;当 x → + ∞ x\to+\infty x→+∞时, v → + ∞ v\to+\infty v→+∞,并且此时 x = 2 σ v + μ x=\sqrt2\sigma v+\mu x=2σv+μ,故有 ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 π ∫ − ∞ + ∞ e − v 2 d v = 1 \int^{+\infty}_{-\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx=\frac{1}{\sqrt\pi}\int^{+\infty}_{-\infty}e^{-v^2}dv=1 ∫−∞+∞2πσ1e−2σ2(x−μ)2dx=π1∫−∞+∞e−v2dv=1,故有 ∫ − ∞ + ∞ e − v 2 d v = π \int^{+\infty}_{-\infty}e^{-v^2}dv=\sqrt\pi ∫−∞+∞e−v2dv=π,这类函数通常无法直接求积分,那么是怎么得到他的积分结果是 π \sqrt\pi π的呢?其实用的是夹逼准则进行求解的。下面给出证明:
数学公式总结
最新推荐文章于 2021-11-05 14:23:55 发布