Deep Learning Based Registration文章阅读(十二)《AutoFlow: Learning a Better Training Set for Optical Flow》

Deep Learning Based Registration文章阅读(十二)

这次的文章是CVPR2021关于光流的一篇文章《AutoFlow: Learning a Better Training Set for Optical Flow》。光流的学习可以分为有监督和无监督两类,对于有监督的学习,通常需要flow field的ground truth。真实世界中通常很难获得这样的ground truth,所以一个目前常用的训练方法是用合成数据。现在最常用的合成数据是Flying Chairs和FlyingThing3D,目前的策略是依次用Flying Chairs和FlyThings3D训练,然后在target dataset上fine tune可以达到最好的效果,也是目前有监督光流学习的标准做法。

Motivation

合成数据泛化到真实数据往往存在gap,所以这篇文章通过引入一种learnable的aug的方式,针对不同的target dataset来对合成数据进行可学习参数的aug或者叫渲染,来减轻合成数据和真实target dataset之间的gap。

Datasets

训练:
FlyingChairs
FlyingThings3D
HD1K
Auto-Flow
Sintel
KITTI
测试:
Sintel
KITTI
加渲染的图像数据集:
Davis
OpenImages
Sintel

Aug

这篇文章的关键是怎么给合成数据加渲染.。总体pipline如下图所示:
在这里插入图片描述
对于Sintel或者KITTI的训练数据当作background,然后取加渲染的图像数据集中的某个数据集的图当作foreground,background/foreground的random的flow也是通过学习到的参数来生成的。对于background只生成透视变换参数,对于foreground有仿射或者透视变化矩阵参数,再加上2*2 grid为控制点的deformable flow参数。foreground的region也是有不同的策略:可以是下图中的smooth或者带有holes的多边形,边的数据也是在一定范围内random,也可以是用OpenImages中的instance来做foreground
在这里插入图片描述
最终前景的motion visulization如下图:
在这里插入图片描述
除了motion,还可以是加blur (gaussian/box filter)和fog
在这里插入图片描述
最终生成的training set data如下图:
在这里插入图片描述

Framework

这篇文章采用的框架是PWC-Net和RAFT

Loss

在这里插入图片描述
先通过PBT+CMA-ES找渲染最优参数(笔者对于这两个算法没有了解)
在这里插入图片描述
然后用上述渲染参数来min loss
Auto-Flow的Loss是Sinel final的EPE (end-point error)或者AE (angular error),实验结果来看EPE对large motion效果更好。

Results

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值