变限积分

定理及其证明

1.

设函数f(x)在[a, b]上可积,则变上限积分函数
F ( x ) d t = ∫ a x f ( t ) d t , 在 [ a , b ] 上 连 续 。 F(x)dt = \int_a^x f(t)dt,在[a,b]上连续。 F(x)dt=axf(t)dt[a,b]

2.

设函数f(x)在[a, b]上可积,在点x0∈[a, b]处连续,则变上限积分函数
F ( x ) d t = ∫ a x f ( t ) d t , 在 x 0 处 可 导 , 且 F ′ ( x 0 ) = f ( x 0 ) 。 F(x)dt = \int_a^x f(t)dt,在x0处可导,且F'(x0) = f(x0)。 F(x)dt=axf(t)dtx0F(x0)=f(x0)

3. 微分基本定理

设函数f(x)在<a, b>上连续,C∈<a, b>,则
d / d x ∫ c x f ( t ) d t = f ( x ) , x ∈ < a , b > . d/dx \int_c^x f(t)dt = f(x),x∈<a,b>. d/dxcxf(t)dt=f(x)x<ab>.
意义:
(1)一个连续函数的原函数可以通过变上限积分表示;
(2)函数的导数可作变上限积分还原到函数自身。

4. 牛顿-莱布尼兹公式

如果函数F(x)在[a,b]上有连续的导函数,则
∫ a x F ′ ( t ) d t = F ( x ) − F ( a ) , x ∈ [ a , b ] . \int_a^x F'(t)dt = F(x) - F(a),x∈[a,b]. axF(t)dt=F(x)F(a)x[ab].

5. 莱布尼兹公式

设f(x)在区间<a, b>内连续,α(x)和β(x)可导,且α(x)∈<a, b>,β(x)∈<a, b>,则
d / d x ∫ α β f ( t ) d t = f ( β ( x ) ) β ′ ( x ) − f ( α ( x ) ) α ′ ( x ) . d/dx \int_α^β f(t)dt = f(β(x))β'(x) - f(α(x))α'(x). d/dxαβf(t)dt=f(β(x))β(x)f(α(x))α(x).

换元的时候要保持单调

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值