复积分的基本性质

(1)
∫ C k f ( z ) d z   = k ∫ C f ( z ) d z ,    其 中 k 为 常 数 \int_{C} kf(z)dz\, = k\int_Cf(z)dz,~~其中k为常数 Ckf(z)dz=kCf(z)dz,  k
(2)
∫ c [ f ( z ) ± g ( z ) ] d z   = ∫ c f ( z ) d z ± ∫ c g ( z ) d z   \int_c [f(z)±g(z)]dz\, = \int_c f(z)dz ± \int_cg(z)dz\, c[f(z)±g(z)]dz=cf(z)dz±cg(z)dz
(3)
∫ C f ( z ) d z   = − ∫ C − f ( z ) d z   \int_C f(z)dz\, = -\int_{C^-} f(z)dz\, Cf(z)dz=Cf(z)dz
(4)
∫ C f ( z ) d z   = ∫ C 1 f ( z ) d z ± ∫ C 2 f ( z ) d z ,    其 中 C 由 C 1 和 C 2 组 成 ; \int_C f(z)dz\, = \int_{C_1} f(z)dz ± \int_{C_2}f(z)dz,~~其中C由C_1和C_2组成; Cf(z)dz=C1f(z)dz±C2f(z)dz,  CC1C2;
(5)

在曲线C上, ∣ f ( z ) ≤ M ∣ |f(z) \le M| f(z)M,l是曲线的C的长度,则
∣ ∫ C f ( z ) d z ∣ ≤ M l |\int_Cf(z)dz| \le Ml Cf(z)dzMl

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值