(1)
∫
C
k
f
(
z
)
d
z
=
k
∫
C
f
(
z
)
d
z
,
其
中
k
为
常
数
\int_{C} kf(z)dz\, = k\int_Cf(z)dz,~~其中k为常数
∫Ckf(z)dz=k∫Cf(z)dz, 其中k为常数
(2)
∫
c
[
f
(
z
)
±
g
(
z
)
]
d
z
=
∫
c
f
(
z
)
d
z
±
∫
c
g
(
z
)
d
z
\int_c [f(z)±g(z)]dz\, = \int_c f(z)dz ± \int_cg(z)dz\,
∫c[f(z)±g(z)]dz=∫cf(z)dz±∫cg(z)dz
(3)
∫
C
f
(
z
)
d
z
=
−
∫
C
−
f
(
z
)
d
z
\int_C f(z)dz\, = -\int_{C^-} f(z)dz\,
∫Cf(z)dz=−∫C−f(z)dz
(4)
∫
C
f
(
z
)
d
z
=
∫
C
1
f
(
z
)
d
z
±
∫
C
2
f
(
z
)
d
z
,
其
中
C
由
C
1
和
C
2
组
成
;
\int_C f(z)dz\, = \int_{C_1} f(z)dz ± \int_{C_2}f(z)dz,~~其中C由C_1和C_2组成;
∫Cf(z)dz=∫C1f(z)dz±∫C2f(z)dz, 其中C由C1和C2组成;
(5)
在曲线C上,
∣
f
(
z
)
≤
M
∣
|f(z) \le M|
∣f(z)≤M∣,l是曲线的C的长度,则
∣
∫
C
f
(
z
)
d
z
∣
≤
M
l
|\int_Cf(z)dz| \le Ml
∣∫Cf(z)dz∣≤Ml