图论入门(一)

https://blog.csdn.net/saltriver/article/details/54428685

摘自上面的博客吸吸吸



图(graph)并不是指图形图像(image)或地图(map)。通常来说,我们会把图视为一种由“顶点”组成的抽象网络,网络中的各顶点可以通过“边”实现彼此的连接,表示两顶点有关联。由此得到我们最基础最基本的2个概念,顶点(vertex)和边(edge)。


基本概念:


一、顶点(vertex)

顶点,表示某个事物或对象。

二、边(edge)

边,表示事物与事物之间的关系。

三、同构(Isomorphism )

顶点和边指的是事物和事物的逻辑关系,不管顶点的位置在哪,边的粗细长短如何,只要不改变顶点代表的事物本身,不改变顶点之间的逻辑关系,那么就代表这些图拥有相同的信息,是同一个图。同构的图区别仅在于画法不同。

四、有向/无向图(Directed Graph/ Undirected Graph)

最基本的图通常被定义为“无向图”,与之对应的则被称为“有向图”。两者唯一的区别在于,有向图中的边是有方向性的。

五、权重(weight)

边的权重(或者称为权值、开销、长度等),也是一个非常核心的概念,即每条边都有与之对应的值。例如当顶点代表某些物理地点时,两个顶点间边的权重可以设置为路网中的开车距离。有时候为了应对特殊情况,边的权重可以是零或者负数。

六、路径/最短路径(path/shortest path)

在图上任取两顶点,分别作为起点(start vertex)和终点(end vertex),我们可以规划许多条由起点到终点的路线。不会来来回回绕圈子、不会重复经过同一个点和同一条边的路线,就是一条“路径”。两点之间存在路径,则称这2个顶点是连通的(connected)。 

路径也有权重。路径经过的每一条边,沿路加权重,权重总和就是路径的权重(通常只加边的权重,而不考虑顶点的权重)。在路网中,路径的权重,可以想象成路径的总长度。在有向图中,路径还必须跟随边的方向。

七、环(loop)

环,也成为环路,是一个与路径相似的概念。在路径的终点添加一条指向起点的边,就构成一条环路。

八、连通图/连通分量(connected graph/connected component)

如果在图G中,任意2个顶点之间都存在路径,那么称G为连通图(注意是任意2顶点)。

我们把一个图的最大连通子图称为它的连通分量。连通分量有如下特点: 
1)是子图; 
2)子图是连通的; 
3)子图含有最大顶点数。 

显然,对于连通图来说,它的最大连通子图就是其本身,连通分量也是其本身。





阅读更多
个人分类: 理论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭