[学习笔记] 母函数

前言:

其实前面刷的FFT的题中已经包含的母函数的题目…
后来发现还有一些别的类型,于是系统的学习一下…

定义:

这里写图片描述

根据定义,这个序列作为函数的系数,称G(x)就是序列的母函数。和一般意义上的函数相比,母函数的功能是计数。

现在我们考虑一个问题

有两个骰子 请问 两个骰子的点数之和为6的情况有多少种…

高中课本里学习了两种基本的计数方法:加法原理和乘法原理
前者是分类 后者则为分步

加法原理:有可能是1+5=5+1或2+4=4+2或3+3=3+3,累加起来,一共五种可能。
乘法原理:第一个骰子只能为 1-5 而当第一个骰子的点数确定的时候 第二个骰子的点数也是确定的 所以情况为 1*5=5

现在我们把问题的要求变一下

求n个筛子点数之和为m的方案数…

总不能用上面的方法慢慢枚举吧…

那么先从简单情形考虑,两个骰子掷出n点,有多少种可能。这相当于把n拆分成两个数的和,这时候对n枚举就很复杂,所以对两个骰子枚举。第一个骰子,6种可能,相互之间是“或”的关系,对应的是加法,但是不能直接相加,因为这无法反映两个骰子的叠加过程。

我们需要逐个分析一个骰子的不同情况,对于一个骰子,假如掷出2个点,就可以看作一个分步策略,相当于——先掷一个点,再掷一个点,所以是(●)^2,当然这样不习惯,于是用x^2来表示。那四个点是x^4,因此可以用指数对应点数。

这样就可以用(x+x^2+…+x^6)表示一个骰子的投掷过程,对于第二个骰子也是这样,最后两式相乘,x^6前面的系数就是有多少种出现6点的方案。

G(x)=x1+x2+x3+x4+x5+x6 G ( x ) = x 1 + x 2 + x 3 + x 4 + x 5 + x 6

H(x)=G(x)2 H ( x ) = G ( x ) 2

那么最后 H(x) 的 6次方的系数 即为我们要求的答案

上面的那个问题答案 即为 G(x)n G ( x ) n 里面m次方的系数

这可以看出来,对于这个多项式,我们并不关心它的值,现在关心的却是它的系数了。

母函数是一个计数工具,x的取值我们不关心,只是个占位置的东西.

类型:

母函数分为普通型母函数和指数型母函数

一些简单的题目:

普通型母函数:

HDU 1028

对于每个数能够组合出的数构造一个母函数
然后把这些母函数相乘即为答案
(x0+x1+x2+x3+...xn)(x0+x2+x4+...)...(x0+xn) ( x 0 + x 1 + x 2 + x 3 + . . . x n ) ∗ ( x 0 + x 2 + x 4 + . . . ) ∗ . . . ∗ ( x 0 + x n )
N比较小 N^3暴力乘即可
FFT貌似不行,因为长度问题…

#include <cstdio>
#include <iostream>
#include <cstring>
const int maxm=1e5+100; 
int A[maxm],B[maxm];
int main()
{
    int n,m;
    while((scanf("%d",&n))!=EOF)
    {
        for(int i=0;i<=n;i++) A[i]=1,B[i]=0;
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
             for(int k=0;k<=n;k+=i)
              B[j+k]+=A[j];
            for(int j=0;j<=n;j++) A[j]=B[j],B[j]=0;
        }
        printf("%d\n",A[n]);
    }
}
HDU 1398

与上题基本一致,只是能用的数只有完全平方数

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
const int maxm=1e5+100; 
int A[maxm],B[maxm];
int main()
{
    int n,m;
    while((scanf("%d",&n))&&n)
    {
        for(int i=0;i<=n;i++) A[i]=1,B[i]=0;
        for(int i=2;i<=n;i++)
        {
            if(std::sqrt(i)!=std::ceil(std::sqrt(i))) continue;
            for(int j=0;j<=n;j++)
             for(int k=0;k<=n;k+=i)
              B[j+k]+=A[j];
            for(int j=0;j<=n;j++) A[j]=B[j],B[j]=0;
        }
        printf("%d\n",A[n]);
    }
}
HDU 1085

构造三个多项式
(x0+x1+x2+...xa)(x0+x21+x22+...+x2b)(x0+x21+x22+...+x2c) ( x 0 + x 1 + x 2 + . . . x a ) ∗ ( x 0 + x 2 ∗ 1 + x 2 ∗ 2 + . . . + x 2 ∗ b ) ∗ ∗ ( x 0 + x 2 ∗ 1 + x 2 ∗ 2 + . . . + x 2 ∗ c )
然后暴力找系数为0的即可
FFT常数太大…

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#define double long double
const double PI=std::acos(-1);
const int maxm=3*5010*2;
struct complex{
    double real,imag;
    complex(){};
    complex(double _real,double _imag):real(_real),imag(_imag){}
}; 
inline complex operator + (complex x,complex y){return (complex){x.real+y.real,x.imag+y.imag};}
inline complex operator - (complex x,complex y){return (complex){x.real-y.real,x.imag-y.imag};}
inline complex operator * (complex x,complex y){return (complex){x.real*y.real-x.imag*y.imag,x.real*y.imag+y.real*x.imag};}
complex A[maxm],B[maxm],C[maxm];
int rev[maxm],len;
inline void FFT(complex *a,int n,int f)
{
    for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1)
    {
        complex wn=(complex){std::cos(PI/i),f*std::sin(PI/i)};
        for(int j=0;j<n;j+=(i<<1))
        {
            complex w=(complex){1,0};
            for(int k=0;k<i;k++,w=w*wn)
            {
                complex x=a[j+k];
                complex y=a[i+j+k]*w;
                a[j+k]=x+y;
                a[i+j+k]=x-y;
            }
        }
    }
    if(f==-1) for(int i=0;i<n;i++) a[i].real=a[i].real/n;
}
int numa,numb,numc;
int m;
inline void work()
{
    memset(A,0,sizeof(A));
    memset(B,0,sizeof(B));
    memset(C,0,sizeof(C));
    for(int i=0;i<=numa;i++) A[i*1].real=1;
    FFT(A,m,1);
    for(int i=0;i<=numb;i++) B[i*2].real=1;
    FFT(B,m,1);
    for(int i=0;i<=numc;i++) C[i*5].real=1;
    FFT(C,m,1);
    for(int i=0;i<m;i++) B[i]=B[i]*C[i],A[i]=A[i]*B[i];
    FFT(A,m,-1);
    for(int i=1;i<m;i++) 
    if((int)round(A[i].real)==0)
    {
        printf("%d\n",i);
        return;
    } 
}
int main()
{

    for(m=1;m<=3*5001;m<<=1) len++;
    for(int i=0;i<m;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
    while((scanf("%d%d%d",&numa,&numb,&numc))&&(numa||numb||numc)) work();
    return 0;
}

指数型母函数:

形式基本为
g(x)=inf0xnn!=a0+a1x1+a2x22!... g ( x ) = ∑ 0 i n f x n n ! = a 0 + a 1 ∗ x 1 + a 2 ∗ x 2 2 ! ∗ . . .

这里写图片描述

这里写图片描述

POJ 3734

直接搞
(x0+x1+x22!+...)2(x0+x22!+x44!+...)2=e2x+(ex+ex2)2=e4x+2e2x+14 ( x 0 + x 1 + x 2 2 ! + . . . ) 2 ∗ ( x 0 + x 2 2 ! + x 4 4 ! + . . . ) 2 = e 2 x + ( e x + e − x 2 ) 2 = e 4 x + 2 e 2 x + 1 4
e4x+2e2x+14=14+inf04n+2n+14xnn e 4 x + 2 e 2 x + 1 4 = 1 4 + ∑ 0 i n f 4 n + 2 n + 1 4 x n n
最后的答案即为第n项的系数 * n!

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
const int mod=10007;
inline int fastpow(int x,int y)
{
    int ans=1;
    for(;y;y>>=1,x=(1ll*x*x)%mod) if(y&1) ans=(1ll*ans*x)%mod;
    return ans;
} 
int main()
{
    int t,n,inv=fastpow(4,mod-2);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        printf("%d\n",(((fastpow(4,n)+fastpow(2,n+1))%mod)*inv)%mod);   
    }   
    return 0; 
}
HDU 1521

柿子就不写了,n^3暴力做就好了…

#include <cstring>
#include <algorithm>
#include <iostream>
#include <cstdio>
const int maxm=1e5+100; 
double a[maxm],b[maxm],p[maxm];
int num[maxm];
int main()
{
    p[0]=1;
    for(int i=1;i<=10;i++) p[i]=p[i-1]*(double)i;
    int n,m;
    while((scanf("%d%d",&n,&m))!=EOF)
    {
        for(int i=1;i<=n;i++) scanf("%d",&num[i]),num[i]=std::min(num[i],m);
        memset(a,0,sizeof(a)),memset(b,0,sizeof(b));
        for(int i=0;i<=num[1];i++) a[i]=1.0/p[i];
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<=m;j++)
             for(int k=0;k<=num[i];k++)
              b[j+k]+=a[j]*1.0/p[k];
            for(int j=0;j<=m;j++) a[j]=b[j],b[j]=0;
        }
        printf("%.0lf\n",a[m]*p[m]);
    }
    return 0;
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值