极限

lim ⁡ x → ∞ f ( x ) = A \lim_{x\rightarrow \infty} f(x) = A limxf(x)=A
即为 lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → − ∞ f ( x ) = A \lim_{x\rightarrow +\infty} f(x) =\lim_{x\rightarrow -\infty} f(x) = A limx+f(x)=limxf(x)=A
费马定理:
f ( x ) f(x) f(x) x 0 x_0 x0的邻域有定义,若 x 0 x_0 x0 f f f的极值点,则有 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
引理一:(局部保号性)
lim ⁡ x → x 0 f ( x ) = A > 0 \lim_{x\rightarrow x_0} f(x) = A>0 limxx0f(x)=A>0(或 < 0 <0 <0),则对于任意正数 r < A r<A r<A,存在 U ° ( x 0 ) U\degree(x_0) U°(x0)使得任意 x ∈ U ° ( x 0 ) x\in U\degree (x_0) xU°(x0)有:
f ( x ) > r > 0 f(x) > r > 0 f(x)>r>0

罗尔中值定理:
若函数 f f f [ a , b ] [a,b] [a,b]上连续且在 ( a , b ) (a,b) (a,b)可导,且 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b),则至少存在一点 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)使得 f ′ ( ξ ) = 0 f'(\xi) =0 f(ξ)=0
推论:柯西中值定理
对于两个在 [ a , b ] [a,b] [a,b]上连续且在 ( a , b ) (a,b) (a,b)可导的函数 f , g f,g f,g
存在 f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac {f'(\xi)}{g'(\xi)} = \frac {f(b)-f(a)}{g(b)-g(a)} g(ξ)f(ξ)=g(b)g(a)f(b)f(a)\lim
证明:构造函数 h ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) g ( b ) − g ( a ) ( g ( x ) − g ( a ) ) h(x)=f(x)-f(a)-\frac {f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a)) h(x)=f(x)f(a)g(b)g(a)f(b)f(a)(g(x)g(a))
显然 h ( a ) = h ( b ) = 0 h(a)=h(b) = 0 h(a)=h(b)=0
套用罗尔中值定理即可。

连续: lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x) = f(x_0) limxx0f(x)=f(x0)即为 f f f x 0 x_0 x0连续。

洛必达法则:
由柯西中值定理:
f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac {f'(\xi)}{g'(\xi)} g(x)g(x0)f(x)f(x0)=g(ξ)f(ξ)
f ( x 0 ) = g ( x 0 ) = 0 f(x_0)=g(x_0)=0 f(x0)=g(x0)=0
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ( x ) g ( x ) = f ′ ( ξ ) g ′ ( ξ ) = f ′ ( x 0 ) g ′ ( x 0 ) \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)}=\frac {f'(x_0)}{g'(x_0)} limxx0g(x)g(x0)f(x)f(x0)=g(x)f(x)=g(ξ)f(ξ)=g(x0)f(x0)

泰勒多项式
f f f在点 x 0 x_0 x0处存在直到 n n n阶的导数,则:
T n ( x ) = ∑ i = 0 n f ( x 0 ) ( i ) ( x − x 0 ) i i ! T_n(x)=\sum_{i=0}^n \frac {f(x_0)^{(i)}(x-x_0)^i}{i!} Tn(x)=i=0ni!f(x0)(i)(xx0)i
其中 f ( x ) ( i ) = ( f ( x ) ( i − 1 ) ) ′ f(x)^{(i)} = (f(x)^{(i-1)})' f(x)(i)=(f(x)(i1))
T n T_n Tn称为 f f f在点 x 0 x_0 x0处(带有皮亚诺余项的)泰勒多项式,其系数被称为泰勒系数。
x 0 = 0 x_0=0 x0=0时为麦克劳林公式。
定理:
f f f在点 x 0 x_0 x0处存在直到 n n n阶的导数,则 f ( x ) = T n ( x ) + o ( ( x − x 0 ) n ) f(x) = T_n(x) + o((x-x_0)^n) f(x)=Tn(x)+o((xx0)n)
证明:
对于 A ( x ) = f ( x ) − T n ( x ) A(x) = f(x) - T_n(x) A(x)=f(x)Tn(x) B ( x ) = ( x − x 0 ) n B(x) = (x-x_0)^n B(x)=(xx0)n
洛必达。

简单的泰勒多项式:
e x = ∑ i = 0 x i i ! e^x = \sum_{i=0} \frac {x^i}{i!} ex=i=0i!xi
sin ⁡ ( x ) = ∑ i = 0 ( − 1 ) i x 2 i + 1 ( 2 i + 1 ) ! \sin(x)=\sum_{i=0} \frac {(-1)^ix^{2i+1}}{(2i+1)!} sin(x)=i=0(2i+1)!(1)ix2i+1
cos ⁡ ( x ) = ∑ i = 0 ( − 1 ) i x 2 i ( 2 i ) ! \cos(x)=\sum_{i=0} \frac {(-1)^ix^{2i}}{(2i)!} cos(x)=i=0(2i)!(1)ix2i
ln ⁡ ( 1 + x ) = ∑ i = 1 ( − 1 ) i + 1 x i i \ln(1+x)=\sum_{i=1} \frac{(-1)^{i+1}x^i}{i} ln(1+x)=i=1i(1)i+1xi
1 1 + x = ∑ i = 0 ( − 1 ) i x i \frac 1{1+x}=\sum_{i=0} (-1)^ix^i 1+x1=i=0(1)ixi
( 1 + x ) α = ∑ i = 0 α i ‾ x i i ! = ∑ i = 0 ( α i ) x i (1+x)^{\alpha} = \sum_{i=0}\frac{\alpha^{\underline{i}}x^i}{i!}=\sum_{i=0}\binom{\alpha}{i} x^i (1+x)α=i=0i!αixi=i=0(iα)xi
最后一条就是广义二项式定理成立的基础。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值