多项式快速插值

拉格朗日+洛必达套餐。
卡常可以尝试小范围时暴力多点求值,效果超好
A C   C o d e \mathrm{AC \ Code} AC Code

#include<bits/stdc++.h>
#define maxn 300005
#define mod 998244353
#define rep(i,j,k) for(int i=(j),LIM=(k);i<=LIM;i++)
using namespace std;

char cb[1<<16],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<16,stdin),cs==ct)?0:*cs++)
void read(int &res){
   char ch;
for(;!isdigit(ch=getc()););for(res=ch-'0';isdigit(ch=getc());res=res*10+ch-'0');
}

int Wl,Wl2,W[maxn],lg[maxn],r[maxn],inv[maxn],fac[maxn],invf[maxn];
int Pow(int b,int k){
    int r=1;for(;k;k>>=1,b=1ll*b*b%mod) if(k&1) r=1ll*r*b%mod;return r; }
void init(int n){
   
	for(Wl=W[0]=inv[0]=inv[1]=fac[0]=fac[1]=invf[0]=invf[1]=1;n>=Wl<<1;Wl<<=1);int pw=Pow(3,(mod-1)/(Wl2=Wl<<1));
	rep(i,1,Wl2) W[i]=1ll*pw*W[i-1]%mod,i>1&&(lg[i]=lg[i>>1]+1,inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod,
		fac[i]=1ll*fac[i-1]*i%mod,invf[i]=1ll*invf[i-1]*inv[i]%mod);
}
int& upd(int &u){
    return u+=u>>31&mod; }
void NTT(int *A,int n
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 机械臂轨迹优化是机械臂控制中的重要问题,它的目的是使机械臂在执行任务时的运动更加平滑、高效。三次多项式是一种常用的轨迹规划方法,它可以通过对给定的离散数据进行计算出平滑的轨迹。下面介绍一下三次多项式的基本思想和步骤。 1. 基本思想 三次多项式的基本思想是,在给定的离散数据点上,构造一个三次多项式函数,使得这个函数在每个数据点处的函数、一阶导数和二阶导数都与原数据点相同。这样构造出来的三次多项式函数就能够通过计算出平滑的轨迹。 2. 步骤 三次多项式步骤如下: (1)确定区间 首先需要确定区间,也就是在哪些时间段内进行。通常情况下,区间是由机械臂的起始位置和目标位置决定的。 (2)计算三次多项式系数 在确定了区间后,就可以根据给定的离散数据点计算三次多项式的系数了。假设有 $n$ 个数据点 $(t_i, q_i)$,其中 $t_i$ 是时间,$q_i$ 是机械臂的位置或姿态。则可以通过以下公式计算出三次多项式的系数: $$ a_i = q_i \\ b_i = \frac{q_{i+1} - q_i}{t_{i+1} - t_i} - \frac{h_i}{3}(2c_i + c_{i+1}) \\ d_i = \frac{c_{i+1} - c_i}{3h_i} \\ c_i = \frac{1}{h_i}(c_i - c_{i-1}) - \frac{h_i}{3}(2c_{i-1} + c_i) $$ 其中,$h_i = t_{i+1} - t_i$,$a_i$,$b_i$,$c_i$,$d_i$ 分别是三次多项式的系数。 (3)计算函数 有了三次多项式的系数后,就可以根据给定的时间 $t$ 计算出机械臂的位置或姿态 $q$ 了。具体计算方法如下: 首先确定时间 $t$ 属于哪个区间 $[t_i, t_{i+1}]$,然后计算出 $t$ 相对于 $t_i$ 的时间差 $\Delta t = t - t_i$。接着,就可以通过以下公式计算出机械臂的位置或姿态: $$ q(t) = a_i + b_i\Delta t + c_i\Delta t^2 + d_i\Delta t^3 $$ 这样就可以得到平滑的机械臂轨迹了。 3. 误差 三次多项式的精度和误差有关。通常情况下,误差是由于函数不能完全拟合原始数据点而产生的。为了减小误差,可以增加数据点的数量,或者采用更高阶的多项式进行。当然,过多的数据点和高阶的多项式也会导致计算量增大和过拟合等问题,需要根据实际情况进行选择。 ### 回答2: 三次多项式是一种常用的方法,能够用一条平滑的曲线连接已知的数据点。在机械臂轨迹优化中,我们可以利用三次多项式来优化机械臂的轨迹规划和控制。 首先,我们需要收集机械臂的起始点和目标点的位置、速度和加速度信息。然后,利用这些数据点来进行三次多项式。通过可以得到一条平滑的轨迹,使机械臂在运动时不会出现突变或过大的加速度,更加稳定和可控。 其次,在进行时,我们需要考虑一些优化策略。例如,可以通过参数调节来控制曲线的平滑程度。此外,在机械臂运动过程中,我们还可以利用来实现轨迹快速调整、避免障碍物等优化目标。通过优化曲线,可以使机械臂运动更加高效、智能和安全。 最后,需要注意的是,三次多项式只是机械臂轨迹优化的一种方法之一。在实际应用中,我们还需要考虑其他因素,如环境约束、物体重量等,并结合其他控制算法,如PID控制等,来实现机械臂轨迹的优化和控制。 总之,使用三次多项式可以优化机械臂轨迹的规划和控制,提高机械臂的稳定性、可控性和运动效率。这种方法在工业生产和自动化领域有着广泛的应用前景。 ### 回答3: 三次多项式是一种常用的曲线拟合方法,可以用于机械臂轨迹优化。机械臂在执行任务时,需要沿着特定轨迹运动,而三次多项式可以使得机械臂的运动更加平滑和连续。 首先,我们需要确定机械臂轨迹的起点和终点,以及中间的关键点。通过将这些关键点作为节点,可以构建三次多项式函数。 其次,根据节点的位置和要求的运动方式,我们可以确定三次多项式的系数。这些系数决定了函数的形状和曲线的特性。我们可以通过解线性方程组的方式求解这些系数,确保函数通过所有的节点。 最后,通过将函数应用于机械臂的运动控制中,可以使得机械臂按照函数所描述的轨迹进行运动。这样的轨迹优化可以使得机械臂的运动更加平滑和连续,减少了机械臂的震动和抖动,提高了机械臂的运动精度和稳定性。 总之,三次多项式方法可以用于机械臂轨迹优化,通过构建函数并将其应用于机械臂控制中,可以使得机械臂的运动更加平滑、连续和稳定。这对于机械臂执行各种任务具有重要的意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值