每次加减乘除都是一次挑战
考虑对有根有标号仙人掌进行计数。(指数生成函数为 C ( x ) C(x) C(x))
连在根上的是若干个仙人掌和仙人掌环(即若干个有根仙人掌的根连成了一个环),
删去根,
则变成若干个仙人掌和仙人掌串。
仙人掌串因为翻转同构,所以其生成函数为 ∑ i = 2 C ( x ) i 2 \sum_{i=2} \frac {C(x)^i}2 ∑i=22C(x)i
这些串和仙人掌任意组合分配标号后连在根上可以得到一颗新的仙人掌:
C ( x ) = x exp ( C ( x ) + ∑ i = 2 C ( x ) i 2 ) = x exp ( C ( x ) + C ( x ) 2 2 × 1 1 − C ( x ) ) C(x) = x \exp (C(x) + \sum_{i=2} \frac {C(x)^i}2) = x \exp (C(x) + \frac {C(x)^2}2 \times \frac {1}{1-C(x)}) C(x)=xexp(C(x)+∑i=22C(x)i)=xexp(C(x)+2C(x)2×1−C(x)1)
化简后可以得到:
C ( x ) = x exp 2 C ( x ) − C ( x ) 2 2 − 2 C ( x ) C(x) = x \exp \frac {2C(x) - C(x)^2}{2 - 2C(x)} C(x)=xexp2−2C(x)2C(x)−C(x)2
令 G ( C ( x ) ) = x exp 2 C ( x ) − C ( x ) 2 2 − 2 C ( x ) − C ( x ) G(C(x)) = x \exp \frac {2C(x) - C(x)^2}{2-2C(x)} - C(x) G(C(x))=xexp2−2C(x)2C(x)−C(x)2−C(x)
d
仙人掌计数
最新推荐文章于 2020-09-17 19:57:07 发布