好序列为对于一个长度为 n n n的序列,其中若有 a i = k ( k > 1 ) a_i= k(k>1) ai=k(k>1),则必存在 a j ∈ [ 1 , i − 1 ] = k − 1 a_{j\in[1,i-1]} = k-1 aj∈[1,i−1]=k−1
求对于所有长度为 n n n的好序列,分别求出 k = 1... n k = 1...n k=1...n的出现次数和。
第一步神仙映射:
把所有的好序列映射到排列中,发现可以一一对应。
对应方法如下:
排列到好序列:
对于一个排列 p i p_i pi,如果 p 1 , p 2 . . . p i p_1,p_2...p_i p1,p2...pi之间有 k k k个升高, a p i = k + 1 a_{p_i} = k+1 api=k+1。
p i − 1 p_{i-1} pi−1和 p i p_i pi之间有一个升高指的是 p i > p i − 1 p_i > p_{i-1} pi>pi−1。
(这里的定义沿用具体数学欧拉数板块的定义)。
好序列到排列:
考虑好序列中的 1 1 1,一定是放在最前面,所以可以知道对于都是 a p i = 1 a_{p_i} = 1 api=1的数,假设有 k k k个,他们一定是占据了 p 1... k p_{1...k} p1...k,并且都满足 p i > p i + 1 p_{i} > p_{i+1} pi>pi+1。
再考虑 2 2 2,可以知道 2 2 2一定是摆在 1 1 1后面并且在 a p i = 2 a_{p_i} = 2 api=2中都满足 p i > p i + 1 p_i > p{i+1} pi>pi+1。
那么我们就得到了一个好序列到排列,排列到好序列的映射,不同的排列都能映射到不同的好序列,不同的好序列都能映射到不同的排列,他们数量相同,他们是一一对应。
翻阅具体数学可以得到:
有 k k k个升高的长度为 n n n的序列数表示为 ⟨ n k ⟩ \left \langle\begin{aligned} n \\ k \end{aligned} \right\rangle ⟨nk⟩
那么根据具体数学的描述有
⟨ n k ⟩ = ( k + 1 ) ⟨ n − 1 k ⟩ + ( n − k ) ⟨ n − 1 k − 1 ⟩ \left \langle\begin{aligned} n \\ k \end{aligned} \right\rangle = (k+1)\left \langle\begin{aligned} n&-1 \\ & \ k \end{aligned} \right\rangle + (n-k)\left \langle\begin{aligned} n-1 \\ k-1 \end{aligned} \right\rangle ⟨nk⟩=(k+1)⟨n−1 k⟩+(n−k)⟨n−1k−1⟩
具体来说就是把 n n n插入一个 1.. n − 1 1..n-1 1..n−1的排列然后分类讨论即可得到该式子。
所以 A n s i + 1 = ∑ ⟨ i k ⟩ ( n i ) ( n − i ) ! Ans_{i+1} = \sum \left \langle\begin{aligned} i \\ k \end{aligned} \right\rangle \binom{n}{i} (n-i)! Ansi+1=∑⟨ik⟩(in)(n−i)!
所以可以先写个 e a s y easy easy版的 O ( n 2 ) O(n^2) O(n2)压压惊。
A C C o d e \mathcal AC\ Code AC Code
#include<bits/stdc++.h>
#define maxn 5005
#define mod 998244353
using namespace std;
int n;
int C[maxn][maxn],E[maxn][maxn],fac[maxn];
int main(){
scanf("%d",&n);
for(int i=C[0][0]=E[0][0]=1;i<=n;i++)
for(int j=C[i][0]=E[i][0]=1;j<=i;j++){
C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
E[i][j] = (1ll * (j+1) * E[i-1][j] + 1ll * (i-j) * E[i-1][j-1]) % mod;
}
fac[0] = 1;
for(int i=1;i<=n;i++) fac[i] = 1ll * fac[i-1] * i % mod;
for(int i=1;i<=n;i++){
int ans = 0;
for(int j=i;j<=n;j++)
ans = (ans + 1ll * E[j][i-1] * C[n][j] % mod * fac[n-j]) % mod;
printf("%d%c",ans," \n"[n==i]);
}
}
接下来是令人目不接暇的炫酷推式子环节了。
有点长
先去掉那我打不来latex的欧拉数
设
F ( i , v ) = ∑ k = v i − 1 ⟨ i k ⟩ ( k v ) F(i,v)= \sum_{k=v}^{i-1}\left \langle\begin{aligned} i \\ k \end{aligned} \right\rangle \binom kv F(i,v)=k=v∑i−1⟨ik⟩(vk)
表示钦定 v v v个间隙中是升高的方案数对每种钦定方案的和。
那么可以通过二项式反演得到:
⟨ i v ⟩ = ∑ k = v i − 1 F ( i , k ) ( k v ) ( − 1 ) k − v \left \langle\begin{aligned} i \\ v \end{aligned} \right\rangle = \sum_{k=v}^{i-1} F(i,k)\binom kv(-1)^{k-v} ⟨iv⟩=k=v∑i−1F(i,k)(vk)(−1)k−v
然后带入之前的式子:
A n s k = ∑ i = k + 1 ( n i ) ( n − i ) ! ∑ j = k i − 1 F ( i , j ) ( j k ) ( − 1 ) j − k Ans_ k = \sum_{i=k+1} \binom ni (n-i)!\sum_{j=k}^{i-1} F(i,j)\binom jk(-1)^{j-k} Ansk=i=k+1∑(in)(n−i)!j=k∑i−1F(i,j)(kj)(−1)j−k
考虑 F i