【LOJ #6363】「地底蔷薇」(多项式快速幂 / 拓展拉格朗日反演)

传送门

拉格朗日反演:
f ( g ( x ) ) = x f(g(x))=x f(g(x))=x
g ( f ( x ) ) = x , 且 [ x n ] f ( x ) = 1 n [ x n − 1 ] ( x g ( x ) ) n g(f(x))=x,且[x^n]f(x)=\frac 1 n[x^{n-1}](\frac{x}{g(x)})^n g(f(x))=x[xn]f(x)=n1[xn1](g(x)x)n
拓展拉格朗日反演
[ x n ] H ( f ( x ) ) = 1 n [ x n − 1 ] H ′ ( x ) ( x g ( x ) ) n [x^n]H(f(x))=\frac 1n [x^{n-1}]H'(x)(\frac{x}{g(x)})^n [xn]H(f(x))=n1[xn1]H(x)(g(x)x)n


首先考虑求出有根的无向简单连通图个数
可以用 ln ⁡ \ln ln求出无根的乘上点数
E G F EGF EGF H ( x ) H(x) H(x)
b i b_i bi表示 i + 1 i+1 i+1个点的带标号点双个数
考虑对于一个无向有根连通图
根可能在多个点双内
删去根后会形成多个连通块
考虑将根以及所在的所有点双的边删去
则每个连通块都会变成若干个连通图
那么一个连通块的生成函数
枚举连通图个数就是 ∑ k b k k ! H ( x ) k \sum_{k}\frac{b_k}{k!}H(x)^k kk!bkH(x)k
B ( x ) = ∑ i b i i ! x i B(x)=\sum_i\frac{b_i}{i!}x^i B(x)=ii!bixi
就有
H ( x ) = x e ( B ( H ( x ) ) ) H(x)=xe^{(B(H(x)))} H(x)=xe(B(H(x)))
那么 H ( x ) e B ( H ( x ) ) = x \frac{H(x)}{e^{B(H(x))}}=x eB(H(x))H(x)=x
H − 1 ( x ) H^{-1}(x) H1(x) H H H的复合逆
那么有
H − 1 ( x ) = x e B ( x ) H^{-1}(x)=\frac{x}{e^{B(x)}} H1(x)=eB(x)x
B ( x ) = ln ⁡ ( x H − 1 ( x ) ) B(x)=\ln(\frac{x}{H^{-1}(x)}) B(x)=ln(H1(x)x)
G ( x ) = ln ⁡ ( H ( x ) x ) G(x)=\ln(\frac{H(x)}{x}) G(x)=ln(xH(x))
G ( H − 1 ( x ) ) = B ( x ) G(H^{-1}(x))=B(x) G(H1(x))=B(x)
由拓展拉格朗日反演得
[ x n ] B ( x ) = [ x n ] G ( H − 1 ( x ) ) = 1 n [ x n − 1 ] G ′ ( x ) ( x H ( x ) ) = 1 n [ x n − 1 ] G ′ ( x ) ( H ( x ) x ) − n [x^n]B(x)=[x^n]G(H^{-1}(x))=\frac{1}{n}[x^{n-1}]G'(x)(\frac{x}{H(x)})=\frac{1}{n}[x^{n-1}]G'(x)(\frac{H(x)}{x})^{-n} [xn]B(x)=[xn]G(H1(x))=n1[xn1]G(x)(H(x)x)=n1[xn1]G(x)(xH(x))n
多项式快速幂可以用 ln ⁡ + exp ⁡ \ln+\exp ln+exp实现
由于 ∑ s \sum s s有保障
这一部分复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

B ( x ) = ∑ i ∈ S b i i ! x i , F ( x ) 为 有 根 的 满 足 条 件 的 图 的 E G F B(x)=\sum_{i\in S}\frac{b_i}{i!}x^i,F(x)为有根的满足条件的图的EGF B(x)=iSi!bixiF(x)EGF
同样有上面的推导可以得到
F ( x ) = x e B ( F ( x ) ) F(x)=xe^{B(F(x))} F(x)=xeB(F(x))
F ( x ) e B ( F ( x ) ) = x \frac{F(x)}{e^{B(F(x))}}=x eB(F(x))F(x)=x
F − 1 ( x ) = x e B ( x ) F^{-1}(x)=\frac{x}{e^{B(x)}} F1(x)=eB(x)x
[ x n ] F ( x ) = 1 n [ x n − 1 ] ( x F − 1 ( x ) ) n = 1 n [ x n − 1 ] e B ( x ) n [x^n]F(x)=\frac 1 n[x^{n-1}](\frac{x}{F^{-1}(x)})^n=\frac 1 n[x^{n-1}]e^{B(x)n} [xn]F(x)=n1[xn1](F1(x)x)n=n1[xn1]eB(x)n
再做一次 exp ⁡ \exp exp即可
注意得到的 F F F是有根的
最后要除以 n n n

复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline ll readll(){
    char ch=gc();
    ll res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
inline int readstring(char *s){
	int top=0;char ch=gc();
	while(isspace(ch))ch=gc();
	while(!isspace(ch)&&ch!=EOF)s[++top]=ch,ch=gc();
	return top;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){if(a==0&&b==0)return 0;for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
typedef vector<int>poly;
namespace Poly{
	cs int C=18,M=(1<<C)|5,G=3;
	int *w[C+1],rev[M],iv[M];
	inline void init_w(){
		for(int i=1;i<=C;i++)w[i]=new int[((1<<(i-1))|1)];
		int wn=ksm(G,(mod-1)/(1<<C));w[C][0]=1;
		for(int i=1,l=(1<<(C-1));i<l;i++)w[C][i]=mul(w[C][i-1],wn);
		for(int i=C-1;i;i--)
		for(int j=0,l=1<<(i-1);j<l;j++)w[i][j]=w[i+1][j<<1];
		iv[0]=iv[1]=1;
		for(int i=2;i<M;i++)iv[i]=mul(mod-mod/i,iv[mod%i]);
	}
	inline void init_rev(int lim){
		for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
	}
	inline void ntt(int *f,int lim,int kd){
		for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
		for(int mid=1,l=1,a0,a1;mid<lim;mid<<=1,l++)
		for(int i=0;i<lim;i+=mid<<1)
		for(int j=0;j<mid;j++)
		a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
		if(kd==-1){
			reverse(f+1,f+lim);
			for(int i=0;i<lim;i++)Mul(f[i],iv[lim]);
		}
	}
	inline poly operator *(poly a,poly b){
		int deg=a.size()+b.size()-1;
		if(deg<=32){
			poly c(deg,0);
			for(int i=0;i<a.size();i++)
			for(int j=0;j<b.size();j++)
			Add(c[i+j],mul(a[i],b[j]));
			return c;
		}
		int lim=1;
		while(lim<deg)lim<<=1;
		init_rev(lim);
		a.resize(lim),ntt(&a[0],lim,1);
		b.resize(lim),ntt(&b[0],lim,1);
		for(int i=0;i<lim;i++)Mul(a[i],b[i]);
		ntt(&a[0],lim,-1),a.resize(deg);
		return a;
	}
	inline poly Inv(poly a,int deg){
		poly b(1,::Inv(a[0])),c;
		for(int lim=4;lim<(deg<<2);lim<<=1){
			c.resize(lim>>1);
			for(int i=0;i<(lim>>1);i++)c[i]=(i<a.size()?a[i]:0);
			c.resize(lim),b.resize(lim);
			init_rev(lim);
			ntt(&b[0],lim,1),ntt(&c[0],lim,1);
			for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
			ntt(&b[0],lim,-1),b.resize(lim>>1);
		}b.resize(deg);return b;
	}
	inline poly deriv(poly a){
		for(int i=0;i<(int)a.size()-1;i++)a[i]=mul(a[i+1],i+1);
		a.pop_back();return a;
	}
	inline poly integ(poly a){
		a.pb(0);
		for(int i=a.size()-1;i;i--)a[i]=mul(a[i-1],iv[i]);
		a[0]=0;return a;
	}
	inline poly Ln(poly a,int deg){
		a=integ(deriv(a)*Inv(a,deg)),a.resize(deg);
		return a;
	}
	inline poly Exp(poly a,int deg){
		poly b(1,1),c;
		for(int lim=2;lim<(deg<<1);lim<<=1){
			c=Ln(b,lim);
			for(int i=0;i<lim;i++)c[i]=dec(i<a.size()?a[i]:0,c[i]);
			Add(c[0],1),b=b*c,b.resize(lim);
		}b.resize(deg);return b;
	}
}
using namespace Poly;
cs int N=100005;
int fac[N],ifac[N];
inline void init_inv(){
	fac[0]=ifac[0]=1;
	for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
	ifac[N-1]=Inv(fac[N-1]);
	for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
int n,m;
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	init_w(),init_inv();
	n=read(),m=read();
	poly H(n+2);
	for(int i=0;i<=n+1;i++)H[i]=mul(ifac[i],ksm(2,1ll*i*(i-1)/2%(mod-1)));
	H=Ln(H,n+2);
	for(int i=0;i<=n+1;i++)Mul(H[i],i);
	poly G(n+1);
	for(int i=0;i<=n;i++)G[i]=H[i+1];
	poly B(n+1),P=G;G=deriv(Ln(G,n+1));
	P=Ln(P,n+1);
	for(int i=1;i<=m;i++){
		int s=read()-1;
		poly a(s),b(s);
		for(int j=0;j<s;j++)a[j]=G[j],b[j]=P[j];
		for(int j=0;j<b.size();j++)Mul(b[j],mod-s);
		b=Exp(b,s)*a;
		B[s]=mul(iv[s],b[s-1]);
	}
	for(int i=0;i<B.size();i++)Mul(B[i],n);
	B=Exp(B,n+1);
	cout<<mul(B[n-1],mul(fac[n-1],iv[n]))<<'\n';
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值