python——Numpy 模块学习

1.Numpy简单创建数组

import numpy as np
# 创建简单的列表
a = [1, 2, 3, 4]
# 将列表转换为数组
b = np.array(b)


import numpy

a = numpy.array([1,2,3,4,5])
print a[1]          #2

b = numpy.array([1,2,3,4,5],float)
print b[1]          #2.0

2.Numpy 数组的查看

数组元素个数
b.size
数组形状
b.shape的用法

(a). Using shape to get array dimensions

import numpy

my__1D_array = numpy.array([1, 2, 3, 4, 5])
print my_1D_array.shape     #(5,) -> 5 rows and 0 columns

my__2D_array = numpy.array([[1, 2],[3, 4],[6,5]])
print my_2D_array.shape     #(3, 2) -> 3 rows and 2 columns 

(b). Using shape to change array dimensions

import numpy

change_array = numpy.array([1,2,3,4,5,6])
change_array.shape = (3, 2)
print change_array      

#Output
[[1 2]
[3 4]
[5 6]]


数组维度
b.ndim
数组元素类型
b.dtype

3.numpy矩阵的转置和铺展操作

         Transpose and Flatten

 转置:transpose  不会改变原来的数组,会生成一个新的数组

import numpy

my_array = numpy.array([[1,2,3],
                        [4,5,6]])
print numpy.transpose(my_array)

#Output
[[1 4]
 [2 5]
 [3 6]]

铺展:flatten

import numpy

my_array = numpy.array([[1,2,3],
                        [4,5,6]])
print my_array.flatten()

#Output
[1 2 3 4 5 6]

4.concatenate 连接numpy数组的用法

import numpy
n,m,t = map(int,input().split())
arr1 = numpy.array([input().split() for _ in range(n)],int)
arr2 = numpy.array([input().split() for _ in range(m)],int)
print (numpy.concatenate((arr1,arr2)))

5.zeros和ones生成numpy样式数组

zeros

The zeros tool returns a new array with a given shape and type filled with 0 's.

默认元素为float

import numpy

print numpy.zeros((1,2))                    #Default type is float
#Output : [[ 0.  0.]] 

print numpy.zeros((1,2), dtype = numpy.int) #Type changes to int
#Output : [[0 0]]

ones

The ones tool returns a new array with a given shape and type filled with 1's.

默认元素为float

import numpy

print numpy.ones((1,2))                    #Default type is float
#Output : [[ 1.  1.]] 

print numpy.ones((1,2), dtype = numpy.int) #Type changes to int
#Output : [[1 1]]   

6.eye的用法

eye

The eye tool returns a 2-D array with 1's as the diagonal and 0's elsewhere. The diagonal can be main, upper or lower depending on the optional parameter  k. A positive  is for the upper diagonal, a negative  k is for the lower, and a  k (default) is for the main diagonal.

import numpy
print numpy.eye(8, 7, k = 1)    # 8 X 7 Dimensional array with first upper diagonal 1.

#Output
[[ 0.  1.  0.  0.  0.  0.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.]
 [ 0.  0.  0.  1.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  0.  0.  1.]
 [ 0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.]]

print numpy.eye(8, 7, k = -2)   # 8 X 7 Dimensional array with second lower diagonal 1.

7.numpy 矩阵的算术运算

import numpy
n,m=map(int,input().split())
a,b= (numpy.array([input().split() for _ in range(n)],int) for i in range(2))
print(a+b,a-b,a*b,a//b,a%b,a**b,sep='\n')

import numpy

a = numpy.array([1,2,3,4], float)
b = numpy.array([5,6,7,8], float)

print a + b                     #[  6.   8.  10.  12.]
print numpy.add(a, b)           #[  6.   8.  10.  12.]

print a - b                     #[-4. -4. -4. -4.]
print numpy.subtract(a, b)      #[-4. -4. -4. -4.]

print a * b                     #[  5.  12.  21.  32.]
print numpy.multiply(a, b)      #[  5.  12.  21.  32.]

print a / b                     #[ 0.2         0.33333333  0.42857143  0.5       ]
print numpy.divide(a, b)        #[ 0.2         0.33333333  0.42857143  0.5       ]

print a % b                     #[ 1.  2.  3.  4.]
print numpy.mod(a, b)           #[ 1.  2.  3.  4.]

print a**b                      #[  1.00000000e+00   6.40000000e+01   2.18700000e+03   6.55360000e+04]
print numpy.power(a, b)         #[  1.00000000e+00   6.40000000e+01   2.18700000e+03   6.55360000e+04]

8.Floor, Ceil and Rint 操作。numpy数组取上整,下整,最接近的数

import numpy
a =numpy.array(list(map(float,input().split())))
print(numpy.floor(a),numpy.ceil(a),numpy.rint(a),sep='\n')

输入值:1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

输出值:
[ 1.  2.  3.  4.  5.  6.  7.  8.  9.]
[  2.   3.   4.   5.   6.   7.   8.   9.  10.]
[  1.   2.   3.   4.   6.   7.   8.   9.  10.]

9.Sum and Prod 数组行和列的加乘

axis =0表示列维度,  axis=1表示行维度

sum

The sum tool returns the sum of array elements over a given axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.sum(my_array, axis = 0)         #Output : [4 6]
print numpy.sum(my_array, axis = 1)         #Output : [3 7]
print numpy.sum(my_array, axis = None)      #Output : 10
print numpy.sum(my_array)                   #Output : 10

prod

The prod tool returns the product of array elements over a given axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.prod(my_array, axis = 0)            #Output : [3 8]
print numpy.prod(my_array, axis = 1)            #Output : [ 2 12]
print numpy.prod(my_array, axis = None)         #Output : 24
print numpy.prod(my_array)                      #Output : 24

10. min and max的用法, 返回一个numpy or 一个值

min

The tool min returns the minimum value along a given axis.

import numpy

my_array = numpy.array([[2, 5], 
                        [3, 7],
                        [1, 3],
                        [4, 0]])

print numpy.min(my_array, axis = 0)         #Output : [1 0]
print numpy.min(my_array, axis = 1)         #Output : [2 3 1 0]
print numpy.min(my_array, axis = None)      #Output : 0
print numpy.min(my_array)                   #Output : 0

max

The tool max returns the maximum value along a given axis.

import numpy

my_array = numpy.array([[2, 5], 
                        [3, 7],
                        [1, 3],
                        [4, 0]])

print numpy.max(my_array, axis = 0)         #Output : [4 7]
print numpy.max(my_array, axis = 1)         #Output : [5 7 3 4]
print numpy.max(my_array, axis = None)      #Output : 7
print numpy.max(my_array)                   #Output : 7

11.Mean, Var, and Std  平均值,方差,标准差的计算

mean

The mean tool computes the arithmetic mean along the specified axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.mean(my_array, axis = 0)        #Output : [ 2.  3.]
print numpy.mean(my_array, axis = 1)        #Output : [ 1.5  3.5]
print numpy.mean(my_array, axis = None)     #Output : 2.5
print numpy.mean(my_array)                  #Output : 2.5

var

The var tool computes the arithmetic variance along the specified axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.var(my_array, axis = 0)         #Output : [ 1.  1.]
print numpy.var(my_array, axis = 1)         #Output : [ 0.25  0.25]
print numpy.var(my_array, axis = None)      #Output : 1.25
print numpy.var(my_array)                   #Output : 1.25

std

The std tool computes the arithmetic standard deviation along the specified axis.

import numpy

my_array = numpy.array([ [1, 2], [3, 4] ])

print numpy.std(my_array, axis = 0)         #Output : [ 1.  1.]
print numpy.std(my_array, axis = 1)         #Output : [ 0.5  0.5]
print numpy.std(my_array, axis = None)      #Output : 1.11803398875
print numpy.std(my_array)                   #Output : 1.11803398875

12. Dot and cross numpy向量点积和差积的计算

dot

The dot tool returns the dot product of two arrays.

import numpy

A = numpy.array([ 1, 2 ])
B = numpy.array([ 3, 4 ])

print numpy.dot(A, B)       #Output : 11

cross

The cross tool returns the cross product of two arrays.

import numpy

A = numpy.array([ 1, 2 ])
B = numpy.array([ 3, 4 ])

print numpy.cross(A, B)     #Output : -2

13.inner product 和outter product

Outer Product是线性代数中的外积( WikiPedia: Outer Product )。也就是张量积 :

inner

The inner tool returns the inner product of two arrays.

import numpy

A = numpy.array([0, 1])
B = numpy.array([3, 4])

print numpy.inner(A, B)     #Output : 4

outer

The outer tool returns the outer product of two arrays.

import numpy

A = numpy.array([0, 1])
B = numpy.array([3, 4])

print numpy.outer(A, B)     #Output : [[0 0]
                            #          [3 4]]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值