本章主要讲解了一些基本的线性代数知识。(非常基础,没看视频的感觉可以直接跳过,防止浪费时间)
matrix(矩阵):在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合
vector(向量):特殊的矩阵,只有一列的矩阵,即 Nx1 matrix
一般使用小写字母来表示向量,大写字母表示矩阵。
接下来两个视频是讲矩阵的加,减,乘法。(略)
predication =datamatrix x parmeter 用此方法进行运算而不是for循环,使得代码更加简洁
假设同时有3个 hypothesis function,用矩阵相乘同样可以大大增加效率。
矩阵乘法的特性:
1.
2.但是结合律依然存在
3.单位矩阵 I 的性质:
矩阵的逆和转置:
逆:
没有逆矩阵的矩阵叫做奇异矩阵或者退化矩阵。
转置: