Andrew机器学习课程 章节3——线性回归回顾

本章主要讲解了一些基本的线性代数知识。(非常基础,没看视频的感觉可以直接跳过,防止浪费时间)

matrix(矩阵):在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合

vector(向量):特殊的矩阵,只有一列的矩阵,即 Nx1 matrix

一般使用小写字母来表示向量,大写字母表示矩阵。

接下来两个视频是讲矩阵的加,减,乘法。(略)

predication =datamatrix x parmeter  用此方法进行运算而不是for循环,使得代码更加简洁

假设同时有3个 hypothesis function,用矩阵相乘同样可以大大增加效率。

矩阵乘法的特性:

1.        

2.但是结合律依然存在

3.单位矩阵 I 的性质:

 

矩阵的逆和转置:

逆:

没有逆矩阵的矩阵叫做奇异矩阵或者退化矩阵。

转置:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值