莫比乌斯反演
文章平均质量分 61
# 莫比乌斯反演
Jozky86
这个作者很懒,什么都没留下…
展开
-
GCD HDU - 1695
GCD HDU - 1695 题意: 给出a,b,c,d,k,求出a<=x<=b, c<=y<=d 且gcd(x,y) == k 的(x,y)的对数。 求的是不同数量对的总数 题解: 和这个题一样P3455 [POI2007]ZAP-Queries,但是本题要求求不同数量对的总数,所以最后的结果要减去重复值 如果是莫比乌斯+分块做法,对于区间[1,b],[1,d],b<d,重复部分是[1,b]部分,所以减去solve(b,b)/2 如果是容斥做法,对于每个i∈[1,b],求[1原创 2021-09-23 11:30:23 · 115 阅读 · 0 评论 -
Visible Lattice Points SPOJ - VLATTICE
Visible Lattice Points SPOJ - VLATTICE 题意: 有一个n∗n∗n的三维直角坐标空间,问从(0,0,0)看能看到几个点。 题解: 本题是二维的一个升级版,升级成三维 用莫比乌斯反演来做 代码: #include <bits/stdc++.h> #include <unordered_map> #define debug(a, b) printf("%s = %d\n", a, b); using namespace std; typedef lo原创 2021-09-22 22:14:25 · 134 阅读 · 0 评论 -
P4619 [SDOI2018]旧试题
P4619 [SDOI2018]旧试题 题意: 求个式子: (∑i=1A∑j=1B∑k=1Cd(i∗j∗k))mod(109+7)(\sum_{i=1}^{A}\sum_{j=1}^{B}\sum_{k=1}^{C}d(i*j*k))mod(10^9+7)(i=1∑Aj=1∑Bk=1∑Cd(i∗j∗k))mod(109+7) 题解: 原创博文1k纪念 很明显,莫比乌斯反演 马上更新 代码: ...原创 2021-09-16 19:49:05 · 112 阅读 · 0 评论 -
P1829 [国家集训队]Crash的数字表格 / JZPTAB
P1829 [国家集训队]Crash的数字表格 / JZPTAB 题意: 求∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)∑i=1n∑j=1mlcm(i,j) 1<=n<=m<=1e7 结果mod20101009 题解: 跟这个题P3911 最小公倍数之和很相近,但是本题数据范围大 tmp是整数分块过程中d在[l,r]这段区间的累加 ll tmp= ((1ll * r * (r + 1) / 2) - (1ll * (l原创 2021-08-22 01:55:30 · 200 阅读 · 0 评论 -
P3911 最小公倍数之和
最小公倍数之和 题目描述: 对于A1,A2…AN,求 ∑ i=1N∑ j=1Nlcm(Ai,Aj) 题解: 莫比乌斯反演,直接强推一波 推导过程我也是一知半解,大体如图 然后预处理f(T)即可 代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 50005 #define rgt register int N, M, cnt[maxn], mu[maxn], p[maxn], t原创 2020-10-03 14:49:31 · 221 阅读 · 0 评论 -
P2522 [HAOI2011]Problem b
P2522 [HAOI2011]Problem b 题意: 对于给出的 n 个询问,每次求有多少个数对 (x,y),满足 a≤x≤b,c≤y≤d,且 gcd(x,y)=k,gcd(x,y) 函数为 x 和 y 的最大公约数。 题解: 这个题跟P3455 [POI2007]ZAP-Queries很像,唯一的区别就是本题不是从1开始是从a开始,本题的公式是这样的: ∑x=ab∑y=cdgcd(x,y)=k\sum_{x=a}^{b}\sum_{y=c}^{d}\gcd(x,y)=k∑x=ab∑y=cdgc原创 2021-08-21 11:30:41 · 197 阅读 · 0 评论 -
P3327 [SDOI2015]约数个数和
P3327 [SDOI2015]约数个数和 题意: 设 d(x) 为 x 的约数个数,给定 n,m,求 ∑i=1n∑j=1md(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}d(i,j)∑i=1n∑j=1md(i,j) 题解: 代码: // Problem: P3327 [SDOI2015]约数个数和 // Contest: Luogu // URL: https://www.luogu.com.cn/problem/P3327 // Memory Limit: 125 MB //原创 2021-08-20 22:15:32 · 227 阅读 · 0 评论 -
P3455 [POI2007]ZAP-Queries
P3455 [POI2007]ZAP-Queries 题意: 求满足1≤x≤a,1≤y≤b1\leq x\leq a,1\leq y\leq b1≤x≤a,1≤y≤b,且gcd(x,y)=dgcd(x,y)=dgcd(x,y)=d的二元组(x,y)的数量 题解: 莫比乌斯反演板子 代码: // Problem: P3455 [POI2007]ZAP-Queries // Contest: Luogu // URL: https://www.luogu.com.cn/problem/P3455 // Mem原创 2021-08-20 13:45:27 · 231 阅读 · 0 评论 -
P2257 YY的GCD
P2257 YY的GCD 题意: 求 1≤x≤N,1≤y≤M1 \leq x \leq N,1 \leq y \leq M1≤x≤N,1≤y≤M 且gcd(x, y) 为质数的 (x,y) 有多少对。 题解: 莫比乌斯反演 代码: #include <bits/stdc++.h> #include <unordered_map> #define debug(a, b) printf("%s = %d\n", a, b); using namespace std; typedef原创 2021-08-20 13:06:02 · 134 阅读 · 0 评论 -
莫比乌斯反演+例题
问题引入: 添加链接描述 给定N和M和D,求满足1<=x<=N,1<=y<=M且gcd(x,y)=D的点对(x,y)的个数 1<=N,M<=1000000 莫比乌斯函数 μ μ(n) = 1 , n=1 μ(n) = (-1)k, n=p1 * p2 * … * Pk (x有奇数个质因子时为-1,x有偶数个质因子时为1) μ(n) = 0 其他情况(x存在平方因子) 莫比乌斯线性筛: int prime[MAXN],prime_tot; bool prime_tag[原创 2020-09-29 22:26:24 · 1237 阅读 · 1 评论
分享