图形学
文章平均质量分 68
Jozky86
这个作者很懒,什么都没留下…
展开
-
图形零散知识点整理
再议奇异值分解SVD,矩阵的极分解(polar decomposition)2.SDF(signed distance field)SDF(signed distance field)基础理论和计算原创 2024-08-30 21:47:59 · 256 阅读 · 0 评论 -
NeRF笔记
这个视频讲的非常非常详细:【较真系列】讲人话-NeRF全解(原理+代码+公式)原创 2024-08-28 15:44:47 · 161 阅读 · 0 评论 -
图形学论文笔记
【深入浅出 Nvidia FleX】(1) Position Based Dynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)超简单的shape matching算法模拟刚体运动–原理与代码(太极taichi)实践【物理模拟】最简单的shape matching的原理与实践原创 2024-08-22 09:57:23 · 556 阅读 · 0 评论 -
games101 实验hw2(作业2)
我们可以用 super-sampling来解决这个问题,即对每个像素进行 2 * 2 采样,并比较前后的结果 (这里并不需要考虑像素与像素间的样本复用)。最后,如果你实现正确的话,你得到的三角形不应该有不正常的黑边。因此在引用hw1中写的get_projection_matrix时,这里的abs要改成-1*zNear的写法,不然图像会反转过来(因为z已经是正的了,abs(z)不会有任何影响,而在hw1中z是负数,所以-1和abs效果是一样的)分别求AB,AC,BC,AP,BP,CP的向量,然后求叉乘。原创 2024-04-29 17:47:50 · 978 阅读 · 0 评论 -
games101 实验hw1(作业1)
Tview已经写好,而Rview没用上。原创 2024-04-28 22:05:57 · 471 阅读 · 0 评论 -
GAMES101 (笔记补充)
Rview−1。原创 2024-04-22 16:05:01 · 879 阅读 · 0 评论 -
GAMES101-现代计算机图形学入门-闫令琪 课程笔记(自用)
【GAMES101-现代计算机图形学入门-闫令琪】参考笔记资料:Games101学习笔记汇总一篇搞定!GAMES101现代计算机图形学入门(全)Games101图形学入门笔记课程笔记原创 2024-04-20 23:30:02 · 302 阅读 · 0 评论 -
GAMES103-作业1-刚体模拟(个人解读)
有Rigid_Bunny和Rigid_Bunny_by_Shape_Matching两个脚本文件步骤:1.受重力因素更新速度2.受外力因素更新速度3.计算Inertia惯性张量(公式见上图)4.计算碰撞(代码中用的Collision Impulse),调用Collision函数5.更新v和w(角速度)6.通过动态调整阈值(punish_threshold)来控制速度和角速度的增长速度,以保持运动的稳定性7.更新位置和方向if (!if(!原创 2024-04-20 11:40:10 · 662 阅读 · 0 评论 -
GAMES103-Lecture 04 Rigid Body Contacts (Lab 1)
因为一个模型的v是质心的速度,vi是模型上某一点的速度。我们不能直接去修改模型上某一点vi的速度,所以要借助j去修改v和w,达到修改vi的目的,求出整个兔子其他点的变化(即修改整体的运动状态)式子的含义:希望重构后的点(正方形的点)与梯形的点尽可能的近,换句话:点所重构的距离尽可能小,所有点收的尽可能少。同一个物体所能产生的旋转不仅仅跟力矩大小有关,跟方向也有关,产生的抵抗是不一样的(如下图,右侧旋转更快),求法向量和切向量的速度,然后关于摩擦的系数a计算,求新的两个方向的速度,然后加起来(向量的相加)原创 2024-04-16 18:22:40 · 906 阅读 · 0 评论 -
GAMES103-Lecture 03 Rigid Body Dynamics
刚体:不会发生形变。原创 2024-04-15 18:26:43 · 405 阅读 · 0 评论 -
GAMES103-Lecture 02 Math Background: Vector, Matrix and Tensor Calculus
signed distance可用于碰撞检测。原创 2024-04-15 12:53:50 · 601 阅读 · 0 评论 -
GAMES103-基于物理的计算机动画入门 笔记
Lecture 02 Math Background: Vector, Matrix and Tensor Calculus原创 2024-04-15 12:09:21 · 214 阅读 · 0 评论