总时间限制: 1000ms 内存限制: 65536kB
描述
今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:
设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。
同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:
有一个数字串:312,当N=3,K=1时会有以下两种分法:
-
3*12=36
-
31*2=62
这时,符合题目要求的结果是:31*2=62
现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。
输入
程序的输入共有两行:
第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
第二行是一个长度为N的数字串。
输出
输出所求得的最大乘积(一个自然数)。(保证最终答案不超过int范围)
样例输入
4 2
1231
样例输出
62
来源
NOIP2000复赛 普及组 第三题
源代码如下:
#include<bits/stdc++.h>
using namespace std;
int a[101][101]={0},f[101][101]={0};
int m,n;
string st;
int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
cin>>n>>m;
cin>>st;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
for(int l=i;l<=j;l++)
a[i][j]=10*a[i][j]+st[l-1]-'0';
for(int i=1;i<=n;i++)
f[i][0]=a[1][i];
for(int k=1;k<=m;k++)
for(int i=k+1;i<=n;i++)
for(int j=k;j<=i-1;j++)
f[i][k]=max(f[i][k],f[j][k-1]*a[j+1][i]);
cout<<f[n][m];
return 0;
}