人工智能入门课程学习(6)——线性回归

1.线性回归的简介

1.1 定义

线性回归(Linear regression)是利用回归方程(函数)对**一个或多个自变量(特征值)和因变量(目标值)**之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归

在这里插入图片描述

1.2 线性回归的应用场景

  • 房价预测

  • 销售额度预测

  • 贷款额度预测

1.3 线性模型理解

举两个例子:

期末成绩:0.7×考试成绩+0.3×平时成绩
房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

上面两个例子,我们看到特征值与目标值之间建立了一个关系,这个关系可以理解为线性模型。

使用线性回归的API解决上边的期末成绩案例
线性回归API
sklearn.linear_model.LinearRegression()
LinearRegression.coef_:回归系数
解决的数据

在这里插入图片描述

代码实现

在这里插入图片描述

2.线性回归的损失与优化

在实际中,真实的回归系数与我们预测的回归系数可能截然不同,真实结果与预测结果之间的差值我们就用损失函数来表示。

2.1 损失函数

总损失定义为:
在这里插入图片描述
在这里插入图片描述
如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!
很多时候对算法的优化就是在求在J(θ)取得最小值(极小值)的时候,对应的回归系数w的值
求J(θ)的极小值的时候常常会遇到局部最优问题,如何解决局部最优问题,找到全局的最优值是机器学习中的重点。

2.2 优化方法

常用的优化方法包括正规方程法和梯度下降法。两者的对比:
在这里插入图片描述
在这里插入图片描述
常用的梯度下降法:

  • 全梯度下降算法(Full gradient descent)FG
  • 随机梯度下降算法(Stochastic gradient descent)SG
  • 随机平均梯度下降算法(Stochastic average gradient descent) SAG
  • 小批量梯度下降算法(Mini-batch gradient descent) mini-bantch

3.scikit里边的线性回归api具体介绍

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘invscaling’, eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的 loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • ‘constant’: eta = eta0
      • ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]
      • ‘invscaling’: eta = eta0 / pow(t, power_t)
        - power_t=0.25:存在父类当中
        - 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

sklearn提供给我们两种实现的API, 可以根据选择使用

4. 案例:波士顿放假预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值