朴素贝叶斯的参数估计的推导过程

  设输入空间 χ \chi χ ⊆ \subseteq R n R^{n} Rnn维向量的集合,输出空间为类标记集合 γ \gamma γ={ c 1 c_{1} c1, c 2 c_{2} c2,… c k c_{k} ck,},输入为特征向量x ∈ \in χ \chi χ ,输出为类标记y ∈ \in γ \gamma γX是定义在输入空间 χ \chi χ 上的随机变量,X是定义在输出空间 γ \gamma γ上的随机变量。P(X,Y)是XY的联合概率分布。训练数据集T={( x 1 x_{1} x1, y 1 y_{1} y1),( x 2 x_{2} x2, y 2 y_{2} y2),…,( x N x_{N} xN, y N y_{N} yN)}由P(X,Y)独立同分布产生。
1、极大似然估计
样本的联合概率分布为
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
因此样本的对数似然函数为
在这里插入图片描述
首先看在这里插入图片描述,此时对数似然函数的后一项相当于常数不考虑。由于在这里插入图片描述,所以由拉格朗日数乘法,在这里插入图片描述在这里插入图片描述求偏导并令其等于零可得在这里插入图片描述
利用条件两边求和可得在这里插入图片描述,因此可得在这里插入图片描述的极大似然估计为在这里插入图片描述

同理,利用条件写出另一个拉格朗日函数在这里插入图片描述类似的方法可得
在这里插入图片描述

2、贝叶斯估计
对于在这里插入图片描述的估计:设 t i t_{i} ti为标签 c i c_{i} ci出现的次数, q i q_{i} qi为标签 c i c_{i} ci出现的概率,i=1,2,…,K。
显然样本服从多项分布:
在这里插入图片描述
由此可设q的先验分布为狄利克雷分布:
在这里插入图片描述
由此可得q的后验分布:
在这里插入图片描述
这也是个狄利克雷分布,用后验期望作为贝叶斯估计的值,则
在这里插入图片描述
类似,设 u l u_{l} ul为当Y= c k c_{k} ck时X的第j个元素为 a j l a_{jl} ajl的次数, r l r_{l} rl为其发生的概率,l=1,2,… S j S_{j} Sj
同样样本服从多项分布:
在这里插入图片描述
r的先验分布为:
在这里插入图片描述
r的后验分布为:
在这里插入图片描述
所以:
在这里插入图片描述

参考文献:https://stats.stackexchange.com/questions/83203/laplace-smoothing-and-dirichlet-prior

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值