目录
2、GD (Generational Distance)世代距离
3、IGD(Inverted Generational Distance)逆世代距离
前言
多目标进化算法 (MOEA )是一类模拟生物进化机制而形成的全局性概率优化搜索方法 ,在 20世纪 90年代中期开始迅速发展 ,其发展可以分为两个阶段。
第一阶段主要有两种方法即不基于 Pareto优化的方法和基于 Pareto优化的方法 ;第二个阶段就是在此基础上提出了外部集这个概念 ,外部集存放的是当前代的所有非支配个体 ,从而使解集保持较好的分布度。这个时期提出的多目标进化算法更多地强调算法的效率和有效性。在这两个阶段中 , 比较典型的多目标进化算法有 NS2 GA2[ 3 ]、PESA2和 SPEA2。
对于这三种算法而言 ,其优点较多但是其缺点也比较明显的。如 NSGA2的优点在于运行效率高、解集有良好的分布性 ,特别对于低维优化问题具有较好的表现 ;其缺点在于在高维问题中解集过程具有缺陷 ,解集的多样性不理想。PESA2的优点在于其解的收敛性很好 ,比较容易接近最优面 ,特别是在高维问题情况下 ;但其不足之处在于选择操作一次只能选取一个个体 ,时间消耗很大 ,而且阶级的多样性不佳。SPEA2的优点在于可以取得一个分布度很好的解集 ,特别是在高维问题的求解上 ,但是其聚类过程保持多样性耗时较长 ,运行效率不高。
多目标进化算法的基本原理描述如下 : 多目标进化算法从一组随机生成的种群出发 ,通过对种群执行选择、交叉和变异等进化操作 ,经过多代进化 ,种群中个体的适应度不断提高 , 从而逐步逼近多目标优化问题的 Pareto最优解集。与单目标进化算法不同 ,多目标进化算法具有特殊的适应度评价机制。为了充分发挥