目标检测YOLO实战应用案例100讲-基于AE-YOLOv3的船舶目标检测与跟踪算法研究

目录

前言

船舶目标检测技术

船舶目标跟踪技术

相关理论基础

2.1引言

2.2船舶数据集的构建

2.2.1数据采集

2.3卷积神经网络理论基础

2.3.1卷积层 

2.3.2激活函数

2.3.3池化层

2.3.4全连接层

2.4经典网络模型介绍

2.5卷积神经网络训练过程

传统检测方法在船舶检测中的应用

3.1引言

3.2传统船舶目标检测

3.2.1帧差法

3.2.2光流法

3.2.3基于HOG特征和SVM分类法

3.3传统船舶目标检测存在的问题

 深度学习方法在船舶检测中的应用

4.1引言

4.2 Faster R-CNN算法

4.2.1 RPN结构

4.2.2损失函数与边界框偏移计算

4.2.3 Faster R-CNN船舶检测流程

4.3 SSD算法

4.3.1先验框的设置

4.3.2损失函数与边界框偏移计算

4.3.3 SSD船舶检测流程

4.4.1 Darknet-53特征提取网络

4.4.2 YOLOv3检测流程与边界框偏移计算

4.4.3损失函数的计算

4.5船舶目标检测实验结果与分析

4.5.1船舶检测性能评价指标

4.5.2实验与分析

4.6基于YOLOv3船舶检测算法的优化改进

4.6.1特征注意模块(Feature Attention,FA)的设计

4.6.2特征增强模块(Feature Enhancement,FE)的设计

4.6.3 AE-YOLOv3船舶检测算法整体网络结构

4.6.4 AE-YOLOv3船舶检测实验结果分析

船舶检测跟踪系统设计

5.1引言

5.2船舶跟踪模块的设计

5.2.1 Kalman滤波

5.2.2 Hungarian算法

5.3船舶检测跟踪系统的实现

5.3.1船舶检测跟踪系统的设计

5.3.2船舶检测跟踪系统的实验分析


前言

在我国历史发展中,内河航运的发展都是有迹可循的,最早开通的内河是鸿沟,在
当时承载了较大的水运任务,到随后京杭大运河、坎儿井运河的开通,都具有重要意义,
说明了内河航运在历史发展中占重要位置,人们很早都懂的利用内河体系进行货物运
输。
内河航运作为我国运输体系之一,在带动航运沿岸经济发展、优化产业结构、带动
就业等方面具有重要作用。随着国民经济的发展需求,最大程度的提高内河航运量,可
以使得国民经济得到有效提升,构建现代化、智能化内河航运体系也是民生所向与发展
所需。同其他交通方式相比,内河航运具有耗能少、运输量大、效益高等特点,占据了
重要位置和作用。构建现代化内河航运体系,安全和绿色发展是必要的,我国作为一个
沿海国家,流域广阔、内河众多,如果没有自动化设备和技术去辅助相关人员和航运管
理机构,那将会增大人力和物力的支出,同时因为人为疏忽,还存在船舶碰撞的风险,
造成事故的发生。因

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值