目标检测YOLO实战应用案例100讲-水下图像增强与水下生物目标检测(续)

本文对比分析了多种水下图像增强方法,指出提出的DS_RD_Net在多个指标上优于传统和GAN方法。在目标检测任务中,利用YOLO v3在增强后的水下图像上表现更优。此外,介绍了一种基于Dense特征融合和注意力特征融合(AFF)的轻量级水下目标检测模型BDA-YOLOv4-tiny,该模型在保证检测精度的同时,提高了实时性,适用于水下目标检测系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

3.4.3 对比实验与分析 

基于密集特征融合的轻量级水下目标检测方法  

4.1 引言 

4.2 轻量级密集特征融合检测网络  

4.2.1 整体网络架构 

4.2.2 Dense策略 

4.2.3 AFF模块 

4.2.4 Bottleneck模块 

4.3 实验结果与分析  

4.3.1 数据和实验环境  

4.3.2 消融实验与分析 

4.3.3 对比实验与分析 


本文篇幅较长,分为上下两篇,上篇详见水下图像增强与水下生物目标检测

3.4.3 对比实验与分析 


本节从定性和定量两个角度对DS_RD_Net和代表性水下增强算法,包括 UCM[ 2]、UDCP [5]、UGAN [48]、UWGAN [12]、Funie GAN [14]等进行比较。  

3.4.3.1 定量分析 
本章采用了四种全参考评估指标MSE、RMSE、PSNR和SSIM来评估不同方 法在3733张水下合成影像数据集上的性能。表3-3的对比结果表明,本章提出的 方法在各个方面取得了最好的结果。 
UCM和UDCP等传统方法的MSE值和RMSE值过大,PSNR值和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值