华为机试真题实战应用【算法代码篇】-尼科彻斯定理(附python、C++和JAVA代码实现)

博客介绍了尼科彻斯定理,并提供了Python、Java和C++三种语言的代码实现,用于验证任何整数的立方可以表示为连续奇数之和。通过思路解析和具体代码,帮助理解算法应用。
摘要由CSDN通过智能技术生成

 

目录

问题描述

思路解析

思路1

思路2

代码实现

python

代码2

Java

代码2

代码3

等差数列

C++

代码2

代码3


问题描述

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。
例如:
1^3=1
2^3=3+5
3^3=7+9+11
4^3=13+15+17+19

输入
多组输入,输入一个整数。
输出
输出分解后的字符串。

样例输入
6

样例输出
31+33+35+37+39+41

 

思路解析

思路1

  • 首先让算出n*n,因为它恰好等于中间的数,再判断n是奇数还是偶数,如果是奇数,那么它的平方正好是中间的奇数,如果是偶数,虽然它的平方是中间数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值