MATLAB算法实战应用案例精讲-【数模应用】价格敏感度PSM分析(附MATLAB、python和R语言代码实现)

本文介绍了价格敏感度模型(PSM)在产品定价中的应用,包括Gabor Granger和PSM两种模型的原理、优缺点及实际操作。PSM模型通过四个问题确定产品价格的接受范围,而Gabor Granger模型关注价格断裂点。文章详细阐述了PSM模型的四个价格问题,以及如何通过SPSS进行数据处理和结果分析。同时,提供了R语言、Python和MATLAB的代码实现,帮助读者理解和运用PSM模型进行价格敏感度测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

几个高频面试题目

产品价格测试:Gabor Granger和PSM两种模型

Gabor Granger(价格断裂点模型)

PSM(价格敏感度测试)

算法原理

什么是PSM模型

PSM模型实施具体步骤

操作及使用

将PSM模型应用到新闻PUSH条数测试

价格敏感度测试

价格敏感度问卷设计及结果分析

SPSS实操

PSM的四个价格问题

PSM模型的特点

如何使用KANO和PSM模型?

1. 使用场景

2. 使用流程

PSM案例使用

1. 问卷设置

2. 样本数量

3. 数据处理

4. 结果呈现

PSM模型的缺陷                                                

存在的问题                                                

解决方法

代码实现

R语言

1. 数据生成

2. 倾向评分匹配

3. 逆概率加权协变量控制

4. 整合代码

python

MATLAB


几个高频面试题目

产品价格测试:Gabor Granger和PSM两种模型

价格是众多消费者对产品的第一印象,它直接决定了产品能给企业带来多少回报和利润,为促销活动提供更多机会。在营销组合中,价格是最灵活的因素,诸如广告一类的要素要更改很难,而调整价格则相对容易,它也是唯一能够产生收入的要素,其他的各种程度上都表现为成本。

定价过高就会卖不出去,而定价过低不仅利润受损,还把产品放在了市场价值水平中的较低位置,而一旦进入市场,再想涨价就难上加难。麦肯锡认为,80-90%的不当价格都是过低了。

新品定价策略多种多样,常见的有撇脂定价、渗透定价、心理定价、折扣定价、歧视定价等。但成功的企业所共同坚持的一点就是“顾客至上”,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值