MATLAB基础应用精讲-【数模应用】正交实验

目录

前言

算法原理

什么是正交实验

在测试中的作用

使用正交试验法的原因

什么是正交试验法?

正交实验基本设计思想

正交表

正交实验的操作方法

正交实验结果分析方法

SPSSAU

正交实验案例

1、背景

2、理论

3、操作

5、文字分析

6、剖析

疑难解惑

正交表和文献结果不一样?

正交实验数据无法进行方差分析(比如双因素/三因素/多因素等)?

拟水平法,组合法,并列法分别是什么意思?

为什么正交表的因子/因素数量(列数)与我要求(预期)不一致?

为什么做不了多因素方差分析?

提示“选择使用更多实验次数的正交表”?

正交试验设计步骤

正交试验的优点

应用案例- 正交试验设计与极差分析

一、案例说明

1.案例背景

2.分析目的

二、正交试验

1.SPSSAU操作

2.正交试验设计

三、极差分析

1.SPSSAU操作

2.极差分析表格

3.因子各水平均值图

四、总结


 

前言

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。 例如作一个三因素三水平的实验,按全面实验要求,须进行3^3=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3^4)正交表安排实验,只需作9次,按L15(3^7)正交表进行15次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。

算法原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值