目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测(续)

目录

3.1.3  注意力机制 

3.2  聚类算法 

3.3  跨级连接的CSC模块 

3.4  损失函数 

4 实验 

4.1  数据集 

4.2  实验环境 

4.3  评价指标 

4.4  实验结果与分析 

知识拓展

无人机目标检测-目标小环境复杂问题

无人机小目标检测与跟踪

一、技术挑战与解决方案

二、完整代码实现(检测+跟踪)YOLOV8实现

三、关键优化方向

 四、完整代码实现(检测+跟踪)YOLOV11实现


本文篇幅较长,分为上下两篇,上篇详见面向无人机图像的小目标检测

3.1.3  注意力机制 


在目标检测任务中,引入注意力机制(Attention Mechanism)可以更好地让网络 模型关注图像中重要的部分,忽略无关信息,提升检测精度。SENet(Squeeze-and Excitation Network)由Jie Hu[44]等人提出,原理图如图3.5所示。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值