目录 第4章 改进的Meta-RCNN小样本目标检测算法 4.1引言 4.2改进的Meta-RCNN小样本目标检测算法 4.2.1 改进的Meta R-CNN算法设计 4.2.2 注意力特征机制 4.2.3 多尺度类注意力机制 4.2.4 混合注意力特征融合 4.3 损失函数 4.4 实验结果与分析 4.4.1多尺度类注意力模块消融实验 4.4.2混合注意力特征融合验证实验 4.4.3对比试验 小样本目标检测方法在丝绸文物图案上的应用 5.1 引言 5.2 构建丝绸文物数据库 5.2.1 丝绸文物数据库整体需求分析 5.2.3 丝绸文物数据库设计与实现 5.3 丝绸图案数据集 5.4 实验结果与分析 5.4.1 CBAM掩码修复数据增强模块在丝绸文物图案上的消融实验 5.4.2 多尺度类注意力在丝绸文物图案上的消融实验 5.4.3 混合注意力融合在丝绸文物图案上的消融实验 5.4.4 对比试验和实验结果 知识拓展 基于YOLOV5的丝绸文物图案的识别 数据准备 1. 数据集格式 2. 数据集类 训练过程 1. 训练函数 数据增强 1. 数据增强配置 本文篇幅较长,分为上下两篇,上篇详见小样本目标检测算法研究及在丝绸文物图案上的应用 第4章 改进的Meta-RCNN小样本目标检测算法