判断直角坐标系中两条线段是否相交

原文参考博客http://blog.csdn.net/keyboarderqq/article/details/51222441

 

已知:其中一条线段两个端点为(x1,y1),(x2,y2),另一条线段的两个端点为(x3,y3),(x4,y4)

问题:判断两条线段是否相交

解题思路:

方法1:利用向量的叉积判断

 

                                    

                    (向量叉积得到的非零系数与0比较大小)

                    向量AB×向量AC>0    ----->    C在直线AB上方

                    向量AB×向量AD<0     ----->    D在直线AB下方

                     

                    

对于线段AB和线段BD,判断他们是否相交,只需利用上述原理,判断C和D是否位于AB所在直线的两侧以及判断

A和B是否位于CD所在直线的两侧即可,若是,则两条线段相交

具体代码:

#include<iostream>
#include<cmath>
using namespace std;


#define temp 1e-10


int main(){
	double x1,y1,x2,y2,x3,y3,x4,y4;
	scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
	
	//共线的情况单独考虑 
	if( abs((x2-x1)*(y4-y3)-(x4-x3)*(y2-y1))<temp ){
		if( (x1==x3)&&((y3-y1)*(y3-y2)<=temp||(y4-y1)*(y4-y2)<=temp) ) printf("Yes\n");
		else printf("No\n");
	}
	else{
		double m=(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
		double n=(x2-x1)*(y4-y1)-(x4-x1)*(y2-y1);
		double p=(x4-x3)*(y1-y3)-(x1-x3)*(y4-y3);
		double q=(x4-x3)*(y2-y3)-(x2-x3)*(y4-y3);
		if( m*n<=temp && p*q<=temp ) printf("Yes\n");
		else printf("No\n");
	} 
	return 0;
} 
	double x1,y1,x2,y2,x3,y3,x4,y4;
	scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
	
	//共线的情况单独考虑 
	if( abs((x2-x1)*(y4-y3)-(x4-x3)*(y2-y1))<temp ){
		if( (x1==x3)&&((y3-y1)*(y3-y2)<=temp||(y4-y1)*(y4-y2)<=temp) ) printf("Yes\n");
		else printf("No\n");
	}
	else{
		double m=(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
		double n=(x2-x1)*(y4-y1)-(x4-x1)*(y2-y1);
		double p=(x4-x3)*(y1-y3)-(x1-x3)*(y4-y3);
		double q=(x4-x3)*(y2-y3)-(x2-x3)*(y4-y3);
		if( m*n<=temp && p*q<=temp ) printf("Yes\n");
		else printf("No\n");
	} 
	return 0;
} 

 

方法2:利用直线的函数表达式判断      

 

                

计算出AB、CD所在直线的函数表达式:

(1)当两条直线对的斜率都存在时,算出各点在另外一条直线上沿y轴方向的投影点,即A',B',C',D',如果(w1-y1)*(w2-y2)<=0  &&(w3-y3)*(w4-y4)<=0  ,则相交;

(2)当直线AB斜率不存在(即x1==x2),CD斜率存在时,算出点A,B在CD直线上沿y轴的投影点A',B',如果(w1-y1)*(w2-y2)<=0 &&(x3-x1)*(x4-x1)<=0,则相交;

(3)当直线CD斜率不存在(即x3==x4),AB斜率存在时,算出点C,D在AB直线上沿y轴的投影点A',B',如果(w3-y3)*(w4-y4)<=0 &&(x1-x3)*(x2-x3)<=0,则相交;

(4)当斜率都不存在时,如果(x1==x3)&&((y3-y1)*(y3-y2)<=0 || (y4-y1)*(y4-y2)<=0),则相交。

具体代码:

 	double x1,y1,x2,y2,x3,y3,x4,y4;
	scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4);
	double k1,k2;
	double b1,b2; 
	double w1,w2,w3,w4; 
	int flag=0;
	if(x2==x1&&x3==x4){
		if( (x1==x3)&&((y3-y1)*(y3-y2)<=temp||(y4-y1)*(y4-y2)<=temp) ) flag=2;
		else flag=0;
	}
	else{
		if(x2!=x1){
			k1=(double)(y2-y1)/(x2-x1);
			b1=y1-k1*x1;
			w3=k1*x3+b1;
			w4=k1*x4+b1;
			if( (w3-y3)*(w4-y4)<=temp ) flag++;
		}
		else if( (x3-x1)*(x4-x1)<=temp ) flag++;
		if(flag){
			if(x3!=x4){
				k2=(double)(y3-y4)/(x3-x4);
				b2=y3-k2*x3;
				w1=k2*x1+b2;
				w2=k2*x2+b2;
				if( (w1-y1)*(w2-y2)<=temp ) flag++;
			}
			else if( (x1-x3)*(x2-x3)<=temp ) flag++;
		}
	}
	if(flag==2) printf("Yes\n");
	else printf("No\n");
	return 0;
} 

(第一次发博客,如有错误还请指正,不胜感激)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值