卷积神经网络的概念理解和简单实现

  卷积神经网络的(convolutional neural network,CNN)是一种专门用来处理具有类似网络结构的数据的神经网络。卷积是一种特殊的线性运算。本文总结了卷积和池化的深入理解,以及一个简单的卷积神经网络的实现。

1.卷积

  通常形式中,卷积是对两个实变函数的一种数学运算。表示为:
                     s ( t ) = ( x ∗ w ) ( t ) s(t)=(x*w)(t) s(t)=(xw)(t)
  函数x为输入(input),w为核函数(kernel function),输出有时被称为特征映射(feature map)。
  如图所示,输入为一个3x4的矩阵A,卷积核为一个2x2的矩阵,进行卷积操作后输出一个2x3的矩阵。可参考该链接的动态图更有利于理解。
在这里插入图片描述
  通常情况下,输入时多维数组的数据,而核通常是由学习算法优化得到的多维数组的参数。

2.池化

  池化函数使用某一位置的相邻输出的总体统计特征来代替网络在该位置的输出。例如,最大池化(max pool)函数给出相邻矩形区域内的最大值,其他常用的池化函数包括相邻矩形区域内的平均值, L 2 L^2 L2范数以及基于距中心像素距离的加权平均函数。而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。
  池化层通常会分别作用于每个输入的特征并减小其大小。当前最常用形式的池化层是每隔2个元素从图像划分出2*2的区块,然后对每个区块中的4个数取最大值。这将会减少75%的数据量。
在这里插入图片描述
  池化函数的作用主要由以下几个方面:
1.特征不变形:池化操作是模型更加关注是否存在某些特征而不是特征具体的位置。
2.特征降维:池化相当于在空间范围内做了维度约减,从而使模型可以抽取更加广范围的特征。同时减小了下一层的输入大小,进而减少计算量和参数个数。
3.在一定程度上防止过拟合,更方便优化。

3.CNN的简单实现

实验环境:python 3.6 ,tensorflow 1.2

# 导入数据集并创建默认的Interactive Session
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 创建权重和偏置
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# tf.nn.conv2d是tensorflow中的二维卷积函数,参数x是输入,W是卷积的参数
# [5,5,1,32];前两个是卷积核的尺寸;第三个数字代表有多少个channel(灰度是1,彩色RGB是3),最后一个数字代表卷积核的数量(也就是这个卷积层会提取多少类特征)
# strides代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点。
# padding代表边界的处理方式,SAME代表给边界加上Padding让卷积的输出和输入保持同样的尺寸。
# tf.nn.max_pool是tensorflow中的最大池化函数,这里使用2*2的最大池化,即将一个2*2的像素块降为一个1*1的像素
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=(1,2,2,1),strides=[1,2,2,1],padding='SAME')

# x是特征,y_是真实的label
# 因为卷积神经网络会利用空间结构信息,需要将1D的输入向量转为2D的图片结构,即从1*784的形式转为原始的28*28的结构
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1,28,28,1])  # -1代表样本数量不固定,1代表颜色通道数量

# 定义第一个卷积层
W_conv1 = weight_variable([5,5,1,32])  # 卷积核尺寸是5*5,1个颜色通道,32个不同的卷积核。
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # conv2d卷积操作并加上偏置,再使用ReLu激活函数进行非线性处理
h_pool1 = max_pool_2x2(h_conv1)  # 对输出结果进行池化操作

# 定义第二个卷积层
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 经历了两次步长为2*2的最大池化,边长已经只有1/4了,图片尺寸由28*28变成了7*7
# 而第二个卷积层的卷积核数量为64,其输出tensor尺寸为7*7*64
# 使用tf.reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量,然后连接一个全连接层。
# 隐含节点为1024,并使用ReLu激活函数
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)

# dropout通过一个keep_prob比率来控制
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

# 损失函数为cross_entropy,和之前一样,但是优化器使用Adam,并给与一个比较小的学习速率1e-4
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 再继续定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 开始训练过程
tf.global_variables_initializer().run()
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
        print("step %d,training accuracy %g"%(i, train_accuracy))

    train_step.run(feed_dict={x:batch[0], y_:batch[1],keep_prob:0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值