1. RDD简介
RDD,弹性分布式数据集(Resiliennt Distributed Datasets),是Spark中最重要的核心概念,是Spark应用中存储数据的数据结构。
RDD 其实就是分布式的只读元素集合。一个Spark应用,本质上就是对RDD进行转化(Transformation) 和行动(Action) 操作,Spark会自动将RDD中的数据分发到集群上,并将操作并行化执行,计算得到最终的结果。
我对RDD理解的知识点框架如下图所示,网上有很多资料都有很详细的解释,Spark RDD是什么?中就对下面的知识点有比较详细的解释,可以参考一下,本文不再赘述。
下一部分通过一个简单的实际例子,可以对上图中提到的很多知识点以及Spark的运行原理有更直观的理解。
2. RDD使用例子
本节介绍一个RDD使用例子,将数据文件读入为RDD,并作相应的转化、行动操作,在过程中展示RDD的知识点,例子来自于《Spark快速大数据分析》第八章。
- 创建数据文件,如下:
## input.txt ##
INFO This is a message with content
INFO This is some other content
(空行)
INFO Here are more messages
WARN This is a warning
(空行)
ERROR Something bad happened
WARN More details on the bad thing
INFO back to normal messages
- 在spark-shell中编写代码如下,得到counts,表示每种提示类型的出现次数
// 读取输入文件
scala> val input = sc.textFile("input.txt") // 切分为单词并且删掉空行
scala> val tokenized = input.map(line => line.split(" ")).filter(words => words.size > 0)
// 提取出每行的第一个单词(日志等级)并进行计数
scala> val counts = tokenized.map(words => (words(0), 1)).reduceByKey{ (a,b) => a + b }
-
使用
toDebugString
获取RDD的血缘关系,如查看input
的血缘关系,可以看到创建出了一个HadoopRDD
对象,然后对该RDD执行映射操作,最终得到了返回的RDD
-
同样的,我们可以查看counts的血缘关系如下,可以看到血缘关系中记录了从input经过若干转化操作得到counts,其中reduceByKey需要进行数据混洗
-
在上图中我们还可以看到,血缘关系中具有不同的缩进等级,这里同一缩进等级的操作为一个Stage,同一个Stage里的操作可以流水线并行——
- 前面的操作map、filter等不需要数据混洗,为窄依赖,划分为一个Stage
- reduceByKey需要数据混洗,为宽依赖,划分为一个Stage
-
在监控界面上查看任务的划分与执行情况,默认地址为http://localhost:4040,打开如下,可以看到尽管我们做了数据的读入、转化操作,但由于惰性求值的特性,还没有任务执行
-
使用
collect
操作,获取counts的内容,由于该操作是行动操作,Spark会开始运行任务,在监控界面查看如下,一个Job,两个Stage,与上面的血缘关系一致
-
点击该任务可以查看任务详情如下,可以看到具体的Stage划分可视化
- 使用
cache
将counts缓存,重新调用collect
函数,Spark会根据缓存自动截断血缘,加快计算,此时在监控界面再次查看任务如下,可以看到只剩下一个Stage,前面的Stage由于缓存跳过计算
// 缓存RDD
scala> counts.cache()
// 求值
scala> counts.collect()
以上就是这个例子的全部内容,通过这个例子来直观理解RDD的各个特性。如有错漏,请指正。
Reference
- Spark RDD是什么?
- Spark之RDD基础学习
- 《Spark快速大数据分析》