《Spark快速大数据分析》- 根据简单例子理解RDD

1. RDD简介

RDD,弹性分布式数据集(Resiliennt Distributed Datasets),是Spark中最重要的核心概念,是Spark应用中存储数据的数据结构

RDD 其实就是分布式的只读元素集合。一个Spark应用,本质上就是对RDD进行转化(Transformation)行动(Action) 操作,Spark会自动将RDD中的数据分发到集群上,并将操作并行化执行,计算得到最终的结果。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-neIWUnCv-1585712739132)(/)]

我对RDD理解的知识点框架如下图所示,网上有很多资料都有很详细的解释,Spark RDD是什么?中就对下面的知识点有比较详细的解释,可以参考一下,本文不再赘述。

下一部分通过一个简单的实际例子,可以对上图中提到的很多知识点以及Spark的运行原理有更直观的理解。

2. RDD使用例子

本节介绍一个RDD使用例子,将数据文件读入为RDD,并作相应的转化、行动操作,在过程中展示RDD的知识点,例子来自于《Spark快速大数据分析》第八章。

  1. 创建数据文件,如下:
## input.txt ##
INFO This is a message with content
INFO This is some other content
(空行)
INFO Here are more messages
WARN This is a warning
(空行)
ERROR Something bad happened
WARN More details on the bad thing
INFO back to normal messages
  1. 在spark-shell中编写代码如下,得到counts,表示每种提示类型的出现次数
// 读取输入文件
scala> val input = sc.textFile("input.txt") // 切分为单词并且删掉空行
scala> val tokenized = input.map(line => line.split(" ")).filter(words => words.size > 0)
// 提取出每行的第一个单词(日志等级)并进行计数 
scala> val counts = tokenized.map(words => (words(0), 1)).reduceByKey{ (a,b) => a + b }
  1. 使用toDebugString获取RDD的血缘关系,如查看input的血缘关系,可以看到创建出了一个HadoopRDD 对象,然后对该RDD执行映射操作,最终得到了返回的RDD
    在这里插入图片描述

  2. 同样的,我们可以查看counts的血缘关系如下,可以看到血缘关系中记录了从input经过若干转化操作得到counts,其中reduceByKey需要进行数据混洗

  3. 在上图中我们还可以看到,血缘关系中具有不同的缩进等级,这里同一缩进等级的操作为一个Stage,同一个Stage里的操作可以流水线并行——

    • 前面的操作map、filter等不需要数据混洗,为窄依赖,划分为一个Stage
    • reduceByKey需要数据混洗,为宽依赖,划分为一个Stage
  4. 在监控界面上查看任务的划分与执行情况,默认地址为http://localhost:4040,打开如下,可以看到尽管我们做了数据的读入、转化操作,但由于惰性求值的特性,还没有任务执行
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uJ4BZrqf-1585712739133)()]

  5. 使用collect操作,获取counts的内容,由于该操作是行动操作,Spark会开始运行任务,在监控界面查看如下,一个Job,两个Stage,与上面的血缘关系一致
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EZwcJRNc-1585712739133)(/)]

  6. 点击该任务可以查看任务详情如下,可以看到具体的Stage划分可视化

  1. 使用cache将counts缓存,重新调用collect函数,Spark会根据缓存自动截断血缘,加快计算,此时在监控界面再次查看任务如下,可以看到只剩下一个Stage,前面的Stage由于缓存跳过计算
// 缓存RDD
scala> counts.cache()
// 求值
scala> counts.collect()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1TLBZbSj-1585712739134)(/)]

以上就是这个例子的全部内容,通过这个例子来直观理解RDD的各个特性。如有错漏,请指正。

Reference

  1. Spark RDD是什么?
  2. Spark之RDD基础学习
  3. 《Spark快速大数据分析》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值