LeetCode 486. 预测赢家(记忆化搜索 / 动态规划)

LeetCode 链接

LeetCode 486

ps:最近发现记忆化搜索真的好用哈~~

一、问题描述

给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例1:
在这里插入图片描述
示例2:
在这里插入图片描述在这里插入图片描述

二、问题分析以及代码

一开始看到题目的时候我以为和 877. 石子游戏 类似,那种巧解题目的感觉不要太爽哈,那题也是从数组左右取值,最终取值最大的获胜,不过它有不同的限定条件:数组长度为偶数,数组值总和为奇数,遇到这种题目总有种暴力解的冲动,不过一看数组长度上界为500,直接放弃想法,然而当我们冷静下来思考给定的条件再尝试模拟其过程的时候,会发现先手有优势,他能够控制对方只能拿偶数或者奇数索引下的值,换句话说先手只要先计算偶数与奇数索引下总和哪个最大(由题意知必存在,鸽巢原理),直接按照索引的奇偶性拿值,也就必赢,所以那题直接 return True

1. 记忆化搜索

回到正题,显然此题没有那样强的限定条件,因为当数组个数为奇数时我们就很难去判断了。然而,我们再仔细看数组长度上界为20,我们又能够高兴的回到搜索的方法了,在将重复计算的子问题保存起来,问题就迎刃而解了。

因为是左右取, 需要数组左右边界,用dic去保存区间 [left, right] 下玩家1能够获得的最大分数,递归函数dfs(nums, left, right) 就是去这样一个区间能够获得的最大分数。

代码(Python)

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        n = len(nums)
        total = sum(nums) 
        dic = {}

        def dfs(nums, left, right):
            if left>right:
                return 0
            if (left, right) in dic:
                return dic[(left, right)]
            curSum = sum(nums[left:right+1])
            best = max(curSum-dfs(nums, left+1, right), curSum-dfs(nums, left, right-1)) # 博弈的过程,在两种情况,让玩家1和玩家2都最优
            dic[(left, right)] = best
            return best

        player1 = dfs(nums, 0, n-1)
        return player1>=total-player1 

2. 动态规划

我们同样可以使用动态规划来解决这个问题。用 dp[i, j] 表示当剩下的数为 nums[i … j] 时,当前操作的选手(注意,不一定是先手)与另一位选手最多的分数差。当前操作的选手可以选择 nums[i] 并留下 nums[i+1 … j],或选择 nums[j] 并留下 nums[i … j-1],因此状态转移方程为:
dp[i][j] = max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1])
dp[i][i] = nums[i]

代码(Python)

class Solution(object):
    def PredictTheWinner(self, nums):
        n = len(nums)
        dp = [[0 for i in range(n)] for j in range(n)]
        for i in range(n):
            dp[i][i] = nums[i]
        for i in range(n-1, -1, -1):
            for j in range(i+1, n):
                dp[i][j] = max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1])
        return dp[0][n-1]>=0

问:为什么 i 从n-1倒序遍历:
答:因为计算dp[i][j]时需要已经计算过的dp[i+1][j]的值,而在计算dii行dp时只有第i+1行有用, 所以这里其实还可以优化成一维数组:
dp[j] = max(nums[i]-dp[j], nums[j]-dp[j-1])

3. 思考

常规思路
暴力回溯----->记忆化搜索------>动态规划

相似题目还有1406 石子游戏3

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值