题目
面试题7:重建二叉树
题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2, 4, 7, 3, 5, 6, 8}和中序遍历序列{4, 7, 2, 1, 5, 3, 8, 6},则重建出二叉树并输出它的头结点。
分析
思路:先序遍历确定根节点,中序遍历确定左右子树(根节点左边左子树),递归即可重建二叉树。
三种遍历方式:先序遍历,中序遍历,后序遍历(以根节点为参考点)。
代码:
#include"stdafx.h"
using namespace std;
#include <exception>
/二叉树操作/
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
};
BinaryTreeNode* CreateBinaryTreeNode(int value)
{
BinaryTreeNode* pNode = new BinaryTreeNode();
pNode->m_nValue = value;
pNode->m_pLeft = nullptr;
pNode->m_pRight = nullptr;
return pNode;
}
void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
{
if (pParent != nullptr)
{
pParent->m_pLeft = pLeft;
pParent->m_pRight = pRight;
}
}
void PrintTreeNode(const BinaryTreeNode* pNode)
{
if (pNode != nullptr)
{
printf("value of this node is: %d\n", pNode->m_nValue);
if (pNode->m_pLeft != nullptr)
printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
else
printf("left child is nullptr.\n");
if (pNode->m_pRight != nullptr)
printf("value of its right child is: %d.\n", pNode->m_pRight->m_nValue);
else
printf("right child is nullptr.\n");
}
else
{
printf("this node is nullptr.\n");
}
printf("\n");
}
void PrintTree(const BinaryTreeNode* pRoot)
{
PrintTreeNode(pRoot);
if (pRoot != nullptr)
{
if (pRoot->m_pLeft != nullptr)
PrintTree(pRoot->m_pLeft);
if (pRoot->m_pRight != nullptr)
PrintTree(pRoot->m_pRight);
}
}
void DestroyTree(BinaryTreeNode* pRoot)
{
if (pRoot != nullptr)
{
BinaryTreeNode* pLeft = pRoot->m_pLeft;
BinaryTreeNode* pRight = pRoot->m_pRight;
delete pRoot;
pRoot = nullptr;
DestroyTree(pLeft);
DestroyTree(pRight);
}
}
/
BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder, int* startInorder, int* endInorder);
BinaryTreeNode* Construct(int* preorder, int* inorder, int length)
{
if (preorder == nullptr || inorder == nullptr || length <= 0)
return nullptr;
return ConstructCore(preorder, preorder + length - 1,
inorder, inorder + length - 1);
}
BinaryTreeNode* ConstructCore
(
int* startPreorder, int* endPreorder,
int* startInorder, int* endInorder
)
{
// 前序遍历序列的第一个数字是根结点的值
int rootValue = startPreorder[0];
BinaryTreeNode* root = new BinaryTreeNode();
root->m_nValue = rootValue;
root->m_pLeft = root->m_pRight = nullptr;
if (startPreorder == endPreorder)
{
if (startInorder == endInorder && *startPreorder == *startInorder)
return root;
else
throw std::exception("Invalid input.");
}
// 在中序遍历中找到根结点的值
int* rootInorder = startInorder;
while (rootInorder <= endInorder && *rootInorder != rootValue)
++rootInorder;
if (rootInorder == endInorder && *rootInorder != rootValue)
throw std::exception("Invalid input.");
int leftLength = rootInorder - startInorder;
int* leftPreorderEnd = startPreorder + leftLength;
if (leftLength > 0)
{
// 构建左子树
root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,
startInorder, rootInorder - 1);
}
if (leftLength < endPreorder - startPreorder)
{
// 构建右子树
root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,
rootInorder + 1, endInorder);
}
return root;
}
// ====================测试代码====================
void Test(char* testName, int* preorder, int* inorder, int length)
{
if (testName != nullptr)
printf("%s begins:\n", testName);
printf("The preorder sequence is: ");
for (int i = 0; i < length; ++i)
printf("%d ", preorder[i]);
printf("\n");
printf("The inorder sequence is: ");
for (int i = 0; i < length; ++i)
printf("%d ", inorder[i]);
printf("\n");
try
{
BinaryTreeNode* root = Construct(preorder, inorder, length);
PrintTree(root);
DestroyTree(root);
}
catch (std::exception& exception)
{
printf("Invalid Input.\n");
}
}
// 普通二叉树
// 1
// / \
// 2 3
// / / \
// 4 5 6
// \ /
// 7 8
void Test1()
{
const int length = 8;
int preorder[length] = { 1, 2, 4, 7, 3, 5, 6, 8 };
int inorder[length] = { 4, 7, 2, 1, 5, 3, 8, 6 };
Test("Test1", preorder, inorder, length);
}
int main(int argc, char* argv[])
{
Test1();
system("PAUSE");
return 0;
}