论文阅读:Severity-Aware Semantic Segmentation with Reinforced Wasserstein Training

本文介绍了一种新的语义分割方法,通过强化学习自适应地学习误分类的严重程度。研究指出,传统的交叉熵损失未能考虑不同误分类的差异性影响。为解决这一问题,作者引入了Wasserstein距离作为损失函数,以区分不同错误对的严重程度。实验在自动驾驶场景下展示了方法的有效性,提高了平均事故间隔里程和mIoU指标。
摘要由CSDN通过智能技术生成

Severity-Aware Semantic Segmentation with Reinforced Wasserstein Training

摘要

在这里插入图片描述
基于交叉熵损失的像素分类在分割问题上取得成功,但是交叉熵有局限性。

当使用交叉熵损失时,分割类别是独立考虑的,没有考虑成对儿误分类的不同严重程度

当发生错误预测时,不同误分类造成的误分类结果可能严重不同。

在这里插入图片描述
比如在自动驾驶领域,如上图所示,将 Car->Bus 要比将 Car->Road 好的多。

针对交叉熵对不同误分类的损失是一样的这个不足,**重要性感知(importance-aware)**方法是按组分配不同的权重,这样可以的得到不同的误分类损失。但是没有考虑成对儿误分类的不同严重程度。

为了考虑误成对儿误分类的不同严重程度,将 Wassertein 距离 作为交叉熵损失的一个选择。

Wassertein 距离被用来衡量两个分布的相似程度,衡量了把数据从分布“p”移动成分布“q”时所需要移动的平均距离的最小值 。

主要贡献

在这里插入图片描述

(1)提出一个原则性的严重度意识语义分割目标,区分成对的错误分类严重程度是必要的。

(2)在我们的 Wasserstein 训练框架中,成对的错误分类严重程度可以作为先验在我们的学习基础矩阵中进行探索。

(3)ground metric 也可以利用基于高保真自主驾驶的部分可观测强化学习(RL)框架自适应地学习。

方法

在这里插入图片描述
Eq.1来计算预测和目标之间的 wasser

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值