近年来,离线强化学习(Offline Reinforcement Learning, Offline RL) 在人工智能领域逐渐崭露头角。其核心目标是通过历史交互数据学习最优策略,而无需与环境直接交互。相比传统强化学习,离线 Q 学习不仅降低了实验成本,更在医疗、金融、自动驾驶等领域展现了巨大潜力。
本文基于一份高质量的代码实现,从理论到实践,深入探讨了离线 Q 学习的核心技术。内容包括实验复现性保障、隐私保护、奖励重塑、回归模型实现以及离线 Q 学习的训练和评估流程。通过多种模型对比,我们不仅揭示了技术细节,还总结了性能与效率的平衡策略。
离线 Q 学习的完整技术框架
离线 Q 学习的核心任务是基于历史数据,学习状态-动作对的价值函数 Q(s,a)Q(s, a)Q(s,a)。这需要一个系统化的流程来保证从数据处理到模型评估的全面覆盖。在本文的代码实现中,整个框架被划分为以下几个主要模块:
1. 实验复现性保障
复现性是机器学习实验的重要基石,特别是在强化学习中,随机初始化和训练的不确定性可能导致结果的波动。代码中的 setup_seed
函数通过设置全局随机种子,确保实验结果在多次运行中具有一致性:
def setup_seed(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
通过控制 numpy
、torch
和 random
的随机性源,以及配置 cuDNN
的执行模式,我们可以有效减少实验结果的随机性,为后续的性能对比提供可靠的基础。
2. 数据读取与预处理
离线 Q 学习的起点是高质量的历史数据。在代码中,轨迹数据包括人口统计特征(demog
)、系统状态(states
)、动作(actions
)、奖励(rewards
)等,数据读取和预处理模块的职责是将这些信息加载并标准化。
数据读取:面向轨迹数据的高效解析
def read_trajectories(data_file: str):
demog, states, interven