Reinforcement Learning: An Introduction 2nd Edition(强化学习)英文原文读后感

本书《Reinforcement Learning: An Introduction》第二版,由Richard S. Sutton著,耗时约120小时阅读完毕。内容涵盖强化学习(RL)的三大维度,深入解析Tabular Solution Methods和Approximate Solution Methods两大方法。通过丰富实例,全面对比各方法的推导和性能,由浅入深,适合初学者系统掌握强化学习。计划二次阅读,进一步深化理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用大约120小时左右的时间,看完了这本书的英文原文,作者Richard S. Sutton,对强化学习入门都至关重要,可以系统全面的帮我们入门,刚开始到前八章,都能看懂,但是就是不知道为什么这么干,令人有些不适,直到第九章也就是第二部分才慢慢了解作者的思路或者说RL发展的历史过程。
总结起来,作者从RL的三大维度讲解了 Tabular Solution Methods 和Approximate Solution Methods 两大方法、并通过无数个大大小小的demo,全面系统的分析了各个方法的推导和性能比较,由浅入深,很不错哦!

当然准备二刷
敬请期待后续更新…
原书地址可下载:Reinforcement Learning: An Introduction 2nd Edition

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值