tf.gradients/optimizer.compute_gradients/optimizer.apply_gradients 联合使用极简demo

本文展示了一个使用TensorFlow的Adam优化器进行变量更新的例子。通过定义变量a,并计算其梯度来更新变量,展示了优化过程。在会话中运行初始化和应用梯度操作,观察变量a和b的变化。

代码

tf.reset_default_graph()
optim = tf.train.AdamOptimizer(0.01)
a = tf.Variable(initial_value=0.,name='a')
b = 2*a
y = a+b
tvars = tf.trainable_variables()

# grads = tf.gradients(y,tvars)
# app = optim.apply_gradients(zip(grads,tvars))

grads_and_vars = optim.compute_gradients(y,tvars)
app = optim.apply_gradients(grads_and_vars)

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for i in range(3):
        sess.run(app)
        print('a={:.2f}, b={:.2f}'.format(a.eval(),b.eval()))

输出

a=-0.01, b=-0.02
a=-0.02, b=-0.04
a=-0.03, b=-0.06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值