LEARNING TO SCHEDULE COMMUNICATION IN MULTI-AGENT REINFORCEMENT LEARNING

SchedNet是一种用于多智能体深度强化学习的框架,解决在有限通信带宽和共享通信介质环境下,智能体如何自我调度、编码消息和根据接收到的信息选择行动的问题。通过学习每个代理部分观察信息的重要性,SchedNet决定哪些代理有权广播信息。在合作通信和导航以及捕食者-猎物的应用中,SchedNet相对于其他机制(如无通信和简单调度)表现出显著的性能优势。
摘要由CSDN通过智能技术生成
ABSTRACT

Many real-world reinforcement learning tasks require multiple agents to make se- quential decisions under the agents’ interaction, where well-coordinated actions among the agents are crucial to achieve the target goal better at these tasks. One way to accelerate the coordination effect is to enable multiple agents to communi- cate with each other in a distributed manner and behave as a group. In this paper, we study a practical scenario when (i) the communication bandwidth is limited and (ii) the agents share the communication medium so that only a restricted num- ber of agents are able to simultaneously use the medium, as in the state-of-the-art wireless networking standards. This calls for a certain form of communication scheduling. In that re

Multi-agent reinforcement learning (MARL) is a subfield of reinforcement learning (RL) that involves multiple agents learning simultaneously in a shared environment. MARL has been studied for several decades, but recent advances in deep learning and computational power have led to significant progress in the field. The development of MARL can be divided into several key stages: 1. Early approaches: In the early days, MARL algorithms were based on game theory and heuristic methods. These approaches were limited in their ability to handle complex environments or large numbers of agents. 2. Independent Learners: The Independent Learners (IL) algorithm was proposed in the 1990s, which allowed agents to learn independently while interacting with a shared environment. This approach was successful in simple environments but often led to convergence issues in more complex scenarios. 3. Decentralized Partially Observable Markov Decision Process (Dec-POMDP): The Dec-POMDP framework was introduced to address the challenges of coordinating multiple agents in a decentralized manner. This approach models the environment as a Partially Observable Markov Decision Process (POMDP), which allows agents to reason about the beliefs and actions of other agents. 4. Deep MARL: The development of deep learning techniques, such as deep neural networks, has enabled the use of MARL in more complex environments. Deep MARL algorithms, such as Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient (DDPG), have achieved state-of-the-art performance in many applications. 5. Multi-Agent Actor-Critic (MAAC): MAAC is a recent algorithm that combines the advantages of policy-based and value-based methods. MAAC uses an actor-critic architecture to learn decentralized policies and value functions for each agent, while also incorporating a centralized critic to estimate the global value function. Overall, the development of MARL has been driven by the need to address the challenges of coordinating multiple agents in complex environments. While there is still much to be learned in this field, recent advancements in deep learning and reinforcement learning have opened up new possibilities for developing more effective MARL algorithms.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adam婷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值