Leetcode 1220 统计元音字母序列的数目

题目

给你一个整数 n,请你帮忙统计一下我们可以按下述规则形成多少个长度为 n 的字符串:

字符串中的每个字符都应当是小写元音字母(‘a’, ‘e’, ‘i’, ‘o’, ‘u’)
每个元音 ‘a’ 后面都只能跟着 ‘e’
每个元音 ‘e’ 后面只能跟着 ‘a’ 或者是 ‘i’
每个元音 ‘i’ 后面 不能 再跟着另一个 ‘i’
每个元音 ‘o’ 后面只能跟着 ‘i’ 或者是 ‘u’
每个元音 ‘u’ 后面只能跟着 ‘a’
由于答案可能会很大,所以请你返回 模 10^9 + 7 之后的结果。

解题思路

  动态规划题,对五种字母分开讨论,这里按顺序下标 0-4 分别对应 a e i o u 结尾的字符串数量。根据题目的条件,可以推出:

  • a 前面可以是 e i u
  • e 前面可以是 a i
  • i 前面可以是 e o
  • o 前面可以是 i
  • u 前面可以是 i o

  那么可以给出递推式:

dp[i][0] = dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][4];
dp[i][1] = dp[i - 1][0] + dp[i - 1][2];
dp[i][2] = dp[i - 1][1] + dp[i - 1][3];
dp[i][3] = dp[i - 1][2];
dp[i][4] = dp[i - 1][2] + dp[i - 1][3];

  那么可以实现代码。

代码
class Solution {
    public static final int MOD = 1000000000 + 7;
    public static final int MAX_LENGTH = 20000 + 50;
    public static long[][] dp = new long[MAX_LENGTH][5];

    public static void initDp(int n) {
        for (int i = 0; i < 5; i++) dp[0][i] = 1L;
        for (int i = 1; i < n; i++) {
            dp[i][0] = ((dp[i - 1][1] + dp[i - 1][2]) % MOD + dp[i - 1][4]) % MOD;
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD;
            dp[i][2] = (dp[i - 1][1] + dp[i - 1][3]) % MOD;
            dp[i][3] = dp[i - 1][2];
            dp[i][4] = (dp[i - 1][2] + dp[i - 1][3]) % MOD;
        }
    }

    public int countVowelPermutation(int n) {
        initDp(n);
        long ans = 0;
        for (int i = 0; i < 5; i++) {
            ans = (ans + dp[n - 1][i]) % MOD;
        }
        return (int) ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值