题目
给你一个整数 n,请你帮忙统计一下我们可以按下述规则形成多少个长度为 n 的字符串:
字符串中的每个字符都应当是小写元音字母(‘a’, ‘e’, ‘i’, ‘o’, ‘u’)
每个元音 ‘a’ 后面都只能跟着 ‘e’
每个元音 ‘e’ 后面只能跟着 ‘a’ 或者是 ‘i’
每个元音 ‘i’ 后面 不能 再跟着另一个 ‘i’
每个元音 ‘o’ 后面只能跟着 ‘i’ 或者是 ‘u’
每个元音 ‘u’ 后面只能跟着 ‘a’
由于答案可能会很大,所以请你返回 模 10^9 + 7 之后的结果。
解题思路
动态规划题,对五种字母分开讨论,这里按顺序下标 0-4
分别对应 a
e
i
o
u
结尾的字符串数量。根据题目的条件,可以推出:
a
前面可以是e
i
u
。e
前面可以是a
i
。i
前面可以是e
o
。o
前面可以是i
。u
前面可以是i
o
。
那么可以给出递推式:
dp[i][0] = dp[i - 1][1] + dp[i - 1][2] + dp[i - 1][4];
dp[i][1] = dp[i - 1][0] + dp[i - 1][2];
dp[i][2] = dp[i - 1][1] + dp[i - 1][3];
dp[i][3] = dp[i - 1][2];
dp[i][4] = dp[i - 1][2] + dp[i - 1][3];
那么可以实现代码。
代码
class Solution {
public static final int MOD = 1000000000 + 7;
public static final int MAX_LENGTH = 20000 + 50;
public static long[][] dp = new long[MAX_LENGTH][5];
public static void initDp(int n) {
for (int i = 0; i < 5; i++) dp[0][i] = 1L;
for (int i = 1; i < n; i++) {
dp[i][0] = ((dp[i - 1][1] + dp[i - 1][2]) % MOD + dp[i - 1][4]) % MOD;
dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD;
dp[i][2] = (dp[i - 1][1] + dp[i - 1][3]) % MOD;
dp[i][3] = dp[i - 1][2];
dp[i][4] = (dp[i - 1][2] + dp[i - 1][3]) % MOD;
}
}
public int countVowelPermutation(int n) {
initDp(n);
long ans = 0;
for (int i = 0; i < 5; i++) {
ans = (ans + dp[n - 1][i]) % MOD;
}
return (int) ans;
}
}