畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 31652 Accepted Submission(s): 10368
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
Author
8600
Source
Recommend
题意:
给出n个点,现要求使这n个点连通,输出最小代价的100倍,如果不能连通,那么输出oh!.
解题思路:
裸的kruskal,后台数据弱,也不需要考虑精度的损失。
#include<stdio.h.>
#include<iostream>
using namespace std;
#define maxn 105
#include<algorithm>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define inf 0x3f3f3f3f
struct lin
{
int from,to;
double val;
} arr[maxn*maxn];
struct node
{
int x,y;
} nodes[maxn];
int p[maxn];
int n,cur;
int cmp(lin a,lin b)
{
return a.val<b.val;
}
double dis(int x,int y,int a,int b)
{
return sqrt((x-a)*(x-a)*1.0+1.0*(y-b)*(y-b));
}
int find(int x)
{
return p[x]==x?x:find(p[x]);
}
double kruskal()
{
for(int i=0; i<n; i++)
p[i]=i;
double cnt=0,ans=0;
for(int i=0; i<cur; i++)
{
int x=find(arr[i].from);
int y=find(arr[i].to);
if(x!=y)
{
ans+=arr[i].val;
p[x]=y;
cnt++;
}
if(cnt==n-1) return ans;
}
return 0;
}
int main()
{
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
cin>>n;
for(int i=0; i<n; i++)
scanf("%d%d",&nodes[i].x,&nodes[i].y);
cur=0;
for(int i=0; i<n; i++)
for(int j=0; j<i; j++)
{
double t=dis(nodes[i].x,nodes[i].y,nodes[j].x,nodes[j].y);
if(t<=1000&&t>=10)
{
arr[cur].from=i;
arr[cur].to=j;
arr[cur++].val=t;
}
}
sort(arr,arr+cur,cmp);
double t=kruskal();
if(t) printf("%.1lf\n",t*100);
else printf("oh!\n");
}
return 0;
}