import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(noise=0.15, random_state=666)
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
defRBFKernelSVC1(gamma):return Pipeline([("stand_c",StandardScaler()),("svcc",SVC(kernel="rbf",gamma=gamma))])