矩阵与凸优化(1) 向量

一、向量与向量空间

1.向量:

2.向量空间:关于向量加法和数乘封闭的向量集合,且满足:

(1)向量加法结合律:u + (v + w) = (u + v) + w;

(2)向量加法交换律:v + w = w + v;

(3)向量加法的单位元:V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v;

(4)向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;

(5)标量乘法分配于向量加法上:a(v + w) = a v + a w;

(6)标量乘法分配于域加法上: (a + b)v = a v + b v;

(7)标量乘法一致于标量的域乘法: a(b v) = (ab)v;

(8)标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。

3.向量子空间:设V是一个向量空间,W\subsetV,若W关于B的加法、数乘封闭,则W是一个子空间

   四个基本子空间:

(1)列空间:矩阵A的列向量组成的线性空间

(2)行空间:矩阵A的行向量组成的线性空间

(3)零空间:满足A\vec{x}=\vec{0}的所有向量组成的向量空间

(4)左零空间:满足\vec{x}^{T}A=\vec{0}的所有向量组成的向量空间

二、线性相关与线性无关

1.定义:对于向量空间V中的一组向量\alpha _{1}\alpha _{2}、…、\alpha _{m},如果存在一组不全为0的数k_{1}k_{2}、…k_{m}使得k_{1}\alpha _{1}+k_{2}\alpha_{2} +...+k_{m}\alpha_{m}=0则称这组向量线性相关,否则称为线性无关

2.理解:

角度线性相关线性无关
能否互相线性表示向量组中至少有一个向量可以由其他向量线性表示向量组中任意向量均不能由其他向量线性表示
齐次线性方程组是否有解方程组x_{1}\alpha_{1}+x_{2}\alpha_{2}+...+x_{m}\alpha_{m}=0有非零解方程组x_{1}\alpha_{1}+x_{2}\alpha_{2}+...+x_{m}\alpha_{m}=0只有零解
行列式的值\alpha_{1},\alpha_{2},...,\alpha_{m}为列(行)向量组的矩阵的行列式等于零\alpha_{1},\alpha_{2},...,\alpha_{m}为列(行)向量组的矩阵的行列式不等于零
线性表示出另一向量的方式若向量\beta可以由向量组\alpha_{1},\alpha_{2},...\alpha_{m}线性表示,则表示方式有无数种若向量\beta可以由向量组\alpha_{1},\alpha_{2},...\alpha_{m}线性表示,则表示方式唯一

三、基与线性生成空间

1.基:向量空间V中满足线性无关且可以线性表示出向量空间V中任意向量的一组向量,向量的个数即向量空间的维数

某一向量空间的基不是唯一的

基给出了定量描述线性结构的方法

2.给定基下的坐标:设\alpha_{1}\alpha_{2}、…、\alpha_{n}是线性空间V_{n}的一个基,对于任意元素\alpha\in V_{n},总有且仅有一组有序数x_{1}x_{2}、…、x_{n},使\alpha=x_{1}\alpha_{1}+x_{2}\alpha_{2}+...+x_{n}\alpha_{n},该有序数组称为元素\alpha在该基下的坐标

四、向量范数

1.定义:是一种具有长度概念的函数,可以实现向量空间到实数的映射,向量范数用来表征向量空间中向量的大小

2.常用范数:
(1)L-p范数

L_{p}=\left \| x \right \|_{p}=({\sum_{i=1}^{n}}x_{i}^{p})^{}\frac{1}{p}

(2)L0范数

\left \| x \right \|_{0}表示向量中非零元素的个数

(3)L1范数(曼哈顿距离、最小绝对误差)

\left \| x \right \|_{1}=\sum_{i=1}^{n}\left | x_{i} \right |   

\left \| x \right \|_{1}表示向量中非零元素的绝对值之和

(4)L2范数(欧式距离)

\left \| x \right \|_{2}=\sqrt{\sum_{i=1}^{n}x_{i}^{2}}

(5)L_{\infty }范数与L_{-\infty }范数

L_{\infty }范数表示向量元素绝对值的最大值

L_{-\infty }范数用来表示向量元素绝对值的最小值

()

3.范数在机器学习中的应用

(1)作用:用来规则化参数,包括约束模型特性(如稀疏、低秩、平滑等),防止模型复杂度过高、过拟合、模型参数数目大于训练样本数目等,达到在保证模型简单的基础上最小化训练误差,使模型具有很小的测试误差(泛化能力)

(2)具体使用(以监督学习为例)

监督学习主要实现最小化目标函数,即:

\omega ^{*}=arg min \sum_{i}^{ }L(y_{i},f(x_{i};\omega))+\lambda\Omega(\omega)

式中第一项用来衡量模型对第i个样本的预测值f(x_{i};\omega)与实际值(标签)之间的误差,不同的Loss函数具有不同的拟合特性;\Omega(\omega)为参数的规则化函数(一般是模型复杂度单调递增函数);\lambda为超参,用来平衡loss项与规则项,\lambda越大表示规则相比训练模型误差更重要

使用L0、L1范数进行规则化,可以使参数变得稀疏化(稀疏化的好处:a.实现特征的自动选择,过滤无用特征 b.简化模型),L1范数因具有比L0范数更好的优化求解特性而被广泛应用(L1范数是L0范数的最优凸近似)

使用L2范数进行规则化,可以改善过拟合,优化求解,使其变得稳定和快速

五、向量内积

1.定义:\vec{\alpha}\cdot \vec{\beta}=\left |\vec{\alpha} \right | \left |\vec{\beta} \right |cos\theta

2.点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在向量b在向量a方向上的投影

 内积为0的两向量互相正交(垂直)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值