GNN 2021(八) Heterogeneous Graph Structure Learning for Graph Neural Networks,AAAI

本文提出了一种名为HGSL的新框架,用于学习图神经网络(GNN)中的最优异构图结构。在异构图的背景下,由于现实世界图的噪声和不完整性,学习图结构而非仅依赖原始结构至关重要。HGSL通过联合学习图结构和GNN参数,生成并融合特征相似图、特征传播图和语义图,以捕捉复杂的异构交互。实验结果显示,这种方法在多种数据集上表现出优越性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述
北邮石川老师团队的论文,又是有关异构图的。
本文指出,异构图在现实中不可避免地是有噪声的或不完整的,因此,对于hgnn来说,学习异构图结构而不是仅仅依赖原始图结构是至关重要的。本文首次尝试学习最优的异构图结构用于hgnn,提出了一个新的框架HGSL,该框架将异构图结构学习和GNN参数学习联合起来进行分类,在每个生成的关系子图中,HGSL不仅通过生成特征相似图来考虑特征相似性,还通过生成特征传播图和语义图来考虑特征和语义之间复杂的异构交互。然后,将这些图融合成一个学习过的异构图,并与GNN一起朝着分类目标进行优化。本文的重点就是三种不同的图,即特征相似图、特征传播图和语义图的学习。

Preliminaries

首先,看本文用到的符号定义。

  1. Definition 1. Heterogeneous Graph 异构图被定义为 G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值